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Objectives

Describe the motivation and methodology for Computational

Imaging & Radiomics

Describe biomarker quantification studies in Radiomics and

Imaging-Genomics (Radiogenomics)




Imaging for precision medicine

Advantages of Imaging:
Performed non-invasively
Provides 3D picture of the entire cancer
Already performed in clinical practice
Multiple times during treatment for diagnosis, staging, radiation oncology planning, response
assessment
Captures a cancer’s appearance over time and space

Disadvantages of Imagi
Probes the cancer at the macroscopic level
Often qualitative not quantitative
Very heterogeneous acquisition protocols:
comparisons between patients difficult

comparisons same patientin time difficult
Storage of only reconstructed images (not the raw data)

Representative CT images of lung cancer
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Tumors are different
Medical imaging can capture these phenotypic differences

Multi-level patient data
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*Lambin et al. Eur J Cancer 2012
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Image-based Phenotyping

1) Imaging
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Important Challenges:
Image Acquisition, reconstruction, standardization, storage

“accepted Aerts HJ, JAMA Oncology 2016

Image-based Phenotyping

1) Imaging 1) Identification Automatic detection of tumors and other
- ~ S abnormalities (CADe)
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1) Improve diagnostic accuracy.

2) Improve speed of diagnostic reads.

Manual

Computer-mnd detocton wnd

segmentation (Semi) automatic segmentation:
1) Method for high throughput analysis of images.

2) Reducing the high intra- and inter-observer
variability observed for target definition.

Automated

Tumor Identification
Identifying tumor presence, location, and extend using visual assessment and/or using
automated detection (CADe) and segmentation. *accepted Aerts HJ, JAMA Oncology 2016

Image-based Phenotyping
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Semantic Quantification
Image-based phenotyping by visual assessment of expert radiologists
*accepted Aerts HJ, JAMA Oncology 2016




Image-based Phenotyping
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Radiomics (ra'dé-6'miks) n.
Radiomics aims to provide a comprehensive quantification of the imaging phenotype by
extracting automated and quantitative features

“accepted Aerts HJ, JAMA Oncology 2016

Image-based Phenotyping
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Evaluation by data integration

Integration of imaging based data with genomic (Imaging-Genomics) and clinical data to evaluate
associations and build prognostic / predictive biomarkers

*accepted Aerts HJ, JAMA Oncology 2016

Image-based Phenotyping
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Clinical Application

Application of robust and useful imaging-based biomarkers in clinical settings
*accepted Aerts HJ, JAMA Oncology 2016
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Image-based Phenotyping

(Radiomics and Imaging-Genomics examples)

Meningioma

*Coroller et al. submitted




nivariate prediction (n=17

A) Semantic features B) Radiomic features
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*training dataset (n=131), validation dataset (n=44) *Coroller et al. submitted

Conclusions meningi

 Clinical model could not predicted grade

Radiographic features did predicted grade
— Semantic (simple, intuitive)
— Radiomic (reproducible, high throughout)

Combined model (sem. + rad.)
significantly improved grade classification

*Coroller et al. submitted




Imaging-Genomics in GBM

Edema Tumor Bulk
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*Grossmann accepted BMC Cancer

Prognostic value of volumetric features

*Grossmann accepted BMC Cancer




Imaging-Genomics Pathway Analysis of MRI Derived Volumetric
Tumor Phenotype Features in Glioblastoma
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*n=96 GBM patients Immune response  Inflammation Homeostasis Cell cycling
from TCGA-GBM cohort
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*Gutman et al. Neuro-Radiology 2015

Volumetric features predict mutational status in
GBM patients
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n=76 GBM patients from TCGA-GBM cohort *Gutman et al. Neuro-Radiology 2015




Recurrent Glioblastoma Treated with Bevacizumab

Al Tumer Imaging

*165 patients enrolled in the phase Il BRAIN trial *Grossman et al. submitted

T1 and FLAIR radiomic data
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*165 patients enrolled in the phase Il BRAIN trial *Grossman et al. submitted

Prognostic value of T1 and FLAIR features
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Prognostic value of T1 and FLAIR features

FLAIR

— Vokametric

Multivariable survival and progression models derived from
T1-weighted baseline imaging

One-year Survival Early Progression Late Progression

These markers showed strong stratification power in independent validation data (hazard-ratio > 2;
log-rank p < 0.001) after adjusting for age, sex, and baseline Karnofsky performance status.

*Grossman et al. submitted

Radiomics: Current Statu

Imaging moves towards a computational data science (bioinformatics)
Due to advances in imaging, quantitative imaging is currently possible

Large retrospective and prospective potential

Large number of imaging features defined & successfully implemented

Feature extraction pipelines implemented in 3D-Slicer (Python / Matlab)

Radiomics signatures are prognostic across cancer types
Radiomics are strongly connected with genomic patterns

Integration of multiple datasets to improve performance
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