

RADIOMICS, RADIO-GENOMICS, RADIO-PATHOMICS: CONNECTING THE DOTS TOWARDS PERSONALIZED MEDICINE IN BRAIN TUMORS

Pallavi Tiwari, Ph.D. Assistant Professor, Biomedical Engineering Director, Brain Image Computing Laboratory Case Western Reserve University

Brain Tumors- Prevalence and Incidences

- 18,600 brain tumor deaths/year in the US.
- GBM most aggressive. Median survival of 12 months [21.3 years of life lost].
- Current treatment: maximal surgical resection, radiotherapy, and concomitant and adjuvant chemotherapy with temozolomide.

Poorly understood complex micro-enviornmnent (hanahan and Weinberg 2000).

Precision Medicine

An emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person.

FUNDAMENTAL QUESTIONS

- WHO TO TREAT?
- HOW TO TREAT?
- WILL THE TREATMENT WORK?

Radiomics: Study of capturing subtle differences in imaging that are not visually appreciable

- Local Texture-based Radiomics Features - Global Structural Radiomics Features

Apophenia: Tendency to "unlock" hidden meaningful patterns

Radiomics: Local Image Feature Representations

- □ What is texture? Capturing local intensity statistics within small neighborhoods, quantify smoothness, heterogeneous appearance etc.

- Feature types:
 1⁴ order Statistical: Mean, range
 2⁴⁰ order Statistical: Statistics
 based on co-cocurring intensities
 Laws features: characterize edges,
 waves, ripples
 Gabor: Multi-scale, multi-orientation
 filter responses

Texture descriptors for necrosis versus tumor recurrence

 $0.60 \le Accuracy \le 0.65$

Can we distinguish radiation effects from tumor recurrences?

on by an

50-60% at be

COLLAGE: entropy of localized gradient orientations

Can we distinguish radiation effects from tumor recurrences?

Can we distinguish radiation effects from tumor recurrences?

Quantifying grades of cerebral radiation necrosis vs. Tumor

Human-machine comparison for radiation necrosis vs. recurrent tumors

Lesion "habitats": mapping disease heterogeneity on MRI

- Current methods employ a global volumetric measure (McDonald criteria).
- 10% cells outside solid tumors are tumor. Complex micro-environment.
- Habitat is defined as different sub-compartments within and around the lesion

Hypothesis: These sub-compartments together in conjunction create a "microcosm" for tumor growth and contribute in survival.

TUMOR HABITAT

GBM: Radiomic Markers Across Tumor Habitat on Treatment-Naïve MRI can Predict Survival in GBM Patients

Combining Radiomics with clinical markers improves prognosis

Radiomics: Study of capturing subtle differences in imaging that are not visually appreciable

- Local Texture-based Radiomics Features
- Global Structural Radiomics Features

Radiomics: Global Image Feature Representations

Deformation due to GBM mass-effect prognostic of overall survival

- Correlate deformation distribution within each AAL cortical/subcortical regions with survival (days). N=30 left-hemispheric tumors, n=24
- right-hemispheric tumors.
- Left-hemispheric (14 short-term, 12 long-term), Right-hemispheric (12 short-term, 12 long-term)

Deformation in somato-sensory, visual and sematic processing areas, primary auditory cortices and memory areas due to right-hemispheric tumor mass-effects may be prognostic of overall survival.

Radio-genomics: Predicting mutational status, molecular subtype, genetic pathways

Predicting IDH mutation status using MRI features from tumor habitat

Radio-genomic analysis of hypoxia pathway reveals MRI features predictive of overall survival in glioblastoma

Radio-pathomics: Understanding the biological underpinning of tumor on imaging

Radio-pathomics for radiation necrosis vs. recurrent tumors -	
Correlating COLLAGE to known pathological processes	

CONCLUDING REMARKS

- Radiomics have the potential to complement personalized prognosis, and treatment evaluation to address questions such as:
 - o Who to treat?
 - o How to treat?
 - o When to treat?
 - o Did the treatment work?
- Radio-genomics, radio-pathomics allow interactions across length scales and provide mechanisms to identify "image biomarkers" for prognosis and treatment evaluation.
- Radiomic techniques not only allow for bench-to-bedside personalized medicine solutions, but also provide reliable and reproducible tools for feature discovery.

Acknowledgements

Collaborators:

- Dr. Anant Madabhushi (Director, CCIPD)
 Dr. Lias Rogers (UH)
 Dr. Lias Rogers (UH)
 Dr. Lea Wolansky (UH)
 Dr. Marta Couce (UH)
 Dr. Marta Couce (UH)
 Dr. Andrew Stoan (UH)
 Dr. Andrew Stoan (UH)
 Dr. Raymond Huang (BWH, Boston)
 Dr. Raymond Huang (BWH, Boston)
 Dr. Marco Pinho (UT Southwestern)
 Dr. C. Lam (Tuen Mun Hospital, China)
 Dr. Susann Brady-Kalnay (CWRU)

Funding:

- Case Comprehensive Cancer Center
 Coulter Translational Phase I, II, III Award
 Ohio Third Frontier
 NSF i-corps

http://bric-lab.com http://ccipd.case.edu

THANK YOU FOR YOUR ATTENTION