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PURPOSE 

• To summarize some of the statistical challenges in radiomics, 
genomics, radiogenomics,  and big data from the perspective 
of a novice 

†in this talk radiogenomics refers to the combination of radiomic features and genomic data, different from the use of this term in 
radiation oncology 
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INTRODUCTION 
WHAT IS RADIOMICS? 

RJ Gillies et al, Radiology, 278, p563-477, 2016  

INTRODUCTION 
WHAT IS RADIOMICS? 
 
• Asks questions about the relationships between features “seen” in 

medical images and the biology of cancer 
 

 
Image Data 

INTRODUCTION 
DEFINITIONS 
• Radiomics: High throughput conversion of images to mineable 

data 

 

 

 

• Big  Data  The exponential growth in the numbers of patients 
and the data elements being harvested from each is known 
colloquially as “big data” 

 

Thisdata can be viewed as descriptors (i.e., phenotypes) of 
tumors and “normal” tissue 

 
 

RJ Gillies et al, Radiology, 278, p563-477, 2016  
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INTRODUCTION 
DEFINITIONS 
Phenotype: 

• The observable physical or biochemical characteristics of an organism, 
as determined by both genetic makeup and environmental influences 

• The expression of a specific trait, such as stature or blood type, based 
on genetic and environmental influences 

 
 

Medical image data Histopathology, 
molecular 

classification 
Genomics 

Radiologist Computer 

Qualitative 
assessment 

Radiomics,       
quantitative 
assessment 

Associations and/or classification relevant to clinical or biological questions 
– Develop predictive models, personalized medicine 

Which are 
correlated and 

which are 
synergistic? 
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INTRODUCTION 
EXAMPLES OF IMAGE-BASED PHENOTYPES 

 
 

Radiologist-assessed qualitative semantic phenotypes 

 
 

 
 

Round-oval 
 

Irregular 
 

Shape 
 

Medical image data Histopathology, 
molecular 

classification 
Genomics 

Radiologist Computer 

Qualitative 
assessment 

Radiomics,       
quantitative 
assessment 

Associations and/or classification relevant to clinical or biological questions 
– Develop predictive models, personalized medicine 

Which are 
correlated and 

which are 
synergistic? 

Irregularity: 0.65; 0.78 
 

 
 

In radiomics, we obtain quantitative computer-extracted image-based 
phenotypes (sometimes also referred to as agnostic phenotypes) 

 
 

Sphericity: 0.80; 0.85 
 

Shape 
 

INTRODUCTION 
EXAMPLES OF IMAGE-BASED PHENOTYPES 
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• Characterization of tumor and/or parenchyma texture 

• Margin irregularity and sharpness 

• CT: Lesion size (RECIST, volume)  

• MRI: Kinetic characterization (uptake, washout) 

• Nuclear medicine: SUV 

 
 

 
 

“What’s in a name – 
A rose by any other name would smell as sweet” 

(Shakespeare) 
 

Quantitative Imaging 

(QIN, QIBA) 

Computer-Aided 

Diagnosis Radiomics 

INTRODUCTION 
EXAMPLES OF IMAGE-BASED PHENOTYPES 

BUT NOW ON TO THE ACTUAL TALK 
PURPOSE 
• To summarize some of the statistical challenges in radiomics, 

genomics, radiogenomics,  and big data from the perspective 
of a novice 

†in this talk radiogenomics refers to the combination of radiomic features and genomic data, different from the use of this term in 
radiation oncology 

INTRODUCTION 

• Studies that can get by with 
small sample sizes 

Two types of research 

• Studies that  use large data 
sets and rely mostly or wholly 
on statistics 

Have luxury of being able to probe 

same system in multiple 

independent ways, e.g., in 

molecular biology 
 

This includes us! Radiomics, 

genomics, radiogenomics  
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“...... must grasp basic statistics … or sloppy science will continue 
to grow” 

DL Vaux, Nature, 492, p180-81, 2012  

INTRODUCTION 
CENTRAL QUESTION 

• Most scientist have been taught some statistics along the way 

– But often the type of statistics is not relevant to their 
current work 

– And once in the lab, people generally just do what everyone 
else does, without necessarily understanding why 

DL Vaux, Nature, 492, p180-81, 2012  

INTRODUCTION 
CENTRAL QUESTION 

• Reproducibility 

• “Big Data” 

• Data sharing 

• Standardization/harmonization 

RJ Gillies et al, Radiology, 278, p563-477, 2016  

INTRODUCTION 
CHALLENGES IN RADIOMICS 
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• Reproducibility 

• “Big Data” 

• Data sharing 

• Standardization/harmonization 

RJ Gillies et al, Radiology, 278, p563-477, 2016  

INTRODUCTION 
CHALLENGES IN RADIOMICS 

What is the extent of the problem? 

 

A 2012 study of 53 landmark papers in basic cancer 
research was able to replicate the original results of 
just 6 of these studies 

 
GC Begley et al, Nature, 483: 531-33, 2012 

RJ Gillies et al, Radiology, 278, p563-477, 2016  

INTRODUCTION 
REPRODUCIBILITY 

What is the extent of the problem? 

 

A 2012 study of 53 landmark papers in basic cancer 
research was able to replicate the original results of 
just 6 of these studies 

 
GC Begley et al, Nature, 483: 531-33, 2012 

RJ Gillies et al, Radiology, 278, p563-477, 2016  

INTRODUCTION 
REPRODUCIBILITY 
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What are the challenges? 

• Large data sets 

– Not from carefully controlled experiments 

– Non-uniformity in equipment manufacturer, imaging 
protocol, imaged population etc 

 

 

 

INTRODUCTION 
BIG DATA 

• Hypothesis testing 

• More on correlation and causality 

• Reproducibility 
– Radiomics 

– Genomics 

– Radiogenomics 

• Discussion  

 

OUTLINE OF THE REST OF THIS PRESENTATION 

“Big Data” 

HYPOTHESIS TESTING 
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• Hypothesis testing is like a criminal trial: A defendant is 
considered not guilty until proven otherwise 

 

 

HYPOTHESIS TESTING 

Null-hypothesis H0 

HYPOTHESIS TESTING 

• How do we decide whether to accept or reject the null-
hypothesis? 

 

 

HYPOTHESIS TESTING 

P-values are commonly used 

With p<0.05 denoting a 
statistically significant 
difference (for a single 
comparison) 

Q: Why do so many colleges and grad schools teach p=0.05?  

The American Statistician, 70, 129-133, 2016  

A: Because that’s still what the scientific community and journal editors use 

Q: Why do so many people still use p=0.05?  

A: Because that’s what they were taught in college or grad school 



8/3/2016 

Drukker/Giger, RSNA 2013 10 

HYPOTHESIS TESTING 

The American Statistician, 70, 129-133, 2016  

Absence of evidence is not evidence of absence  
Altman DG and Bland JM, British medical journal, 311, 485, 1995 

The statistical crisis in science 
Geldman A and Loken E, American Scientist, 2014 

The fallacy of the null-hypothesis significance test 
Rozeboom WM,  Psychological Bulletin, 57, 416-428, 1960 

False-positive psychology: Undisclosed flexibility in data collection and 
analysis allows presenting anything as statistically significant 

SimmonsJP et al,  Psychological Science, 22, 1359-1366, 2011 

Why most published research findings are false 
Ioannidis JP, PlosOne , 2, e124, 2005 

HYPOTHESIS TESTING 

1. p-values can indicate how incompatible the data are with a specified 
statistical model 

2. A p-value does not measure the probability that the studied hypothesis is 
true, or the probability that the data were produced by random chance 
alone 

3. Scientific conclusions and business decisions should not be based on 
whether a p-value passes a specific threshold 

4. Proper inference requires full reporting and transparency 
5. A p-value, or statistical significance, does not measure the size of an 

effect or the importance of a result 
6. By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis 
 

HYPOTHESIS TESTING 

1. p-values can indicate how incompatible the data are with a specified 
statistical model 

2. A p-value does not measure the probability that the studied hypothesis is 
true, or the probability that the data were produced by random chance 
alone 
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whether a p-value passes a specific threshold 

4. Proper inference requires full reporting and transparency 
5. A p-value, or statistical significance, does not measure the size of an 

effect or the importance of a result 
6. By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis 
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• Often a variety of tests for a variety of possible effects are 
applied to a single data set and only those yielding a 
significant result are reported  

 

  

HYPOTHESIS TESTING 
MULTIPLE HYPOTHESIS TESTING 

WRONG 

Cherry-picking promising findings   Data dredging 

Selective inference P-hacking 

One needs multiplicity correction procedures that control the family 
wise error rate or the false discovery rate 

 

• Multiplicity correction procedures  
• ‘Traditional’ methods to control the family-wise error rate such as Bonferroni-

Holm seen by many as too  conservative 
• The test fails to reject the null-hypothesis (that there is no difference) 

when there really is a difference (type II error) 

• Methods to control the false discovery rate (e.g., the Benjamini–Hochberg 
procedure) may be more useful, but perhaps too lax? 
• The null-hypothesis is rejected more frequently, but at the cost of 

indicating a statistically significant difference when there is none (type I error) 

HYPOTHESIS TESTING 
MULTIPLE HYPOTHESIS TESTING 

MORE ON CORRELATION  
AND CAUSALITY 
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Association 

Correlation Causation 

MORE ON CORRELATION AND CAUSALITY 

N Altman, M Krzywinski, Nature Methods, 12, p899-900, 2015  

N Altman, M Krzywinski, Nature Methods, 12, p899-900, 2015  

Association 

Correlation Causation 

Dependence 

= 

MORE ON CORRELATION AND CAUSALITY 

N Altman, M Krzywinski, Nature Methods, 12, p899-900, 2015  

Association 

Correlation Causation 

Trends  

(linear or 

increasing/ 

decreasing) 

Uncorrelated 

= 

MORE ON CORRELATION AND CAUSALITY 
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JM Bland, DG Altman, Lancet i: p307-10, 1986 

Association 

Correlation Causation 

Null hypothesis:      
2 methods/variables 
are not linearly 
related 

A high correlation 
does not 
necessarily mean 
agreement 

y1 

y2 

MORE ON CORRELATION AND CAUSALITY 

JM Bland, DG Altman, Lancet i: p307-10, 1986 

Association 

Correlation Causation 

But even if the 
points lie along the 
equality line 

y1 

y2 

Is this agreement 
“good enough”? 

MORE ON CORRELATION AND CAUSALITY 

JM Bland, DG Altman, Lancet i: p307-10, 1986 

Association 

Correlation Causation 

More insightful way 
of assessing 
agreement 

(y2+y1)/2 

y2-y1 

mean 

0 
Expected range in 

differences between 

measurements 

bias 

Whether this is 
“good enough” 
depends on clinical 
task 

MORE ON CORRELATION AND CAUSALITY 
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N Altman, M Krzywinski, Nature Methods, 12, p899-900, 2015  

Association 

Correlation Causation 

Very different 
datasets may have 
similar/identical 
correlation 
coefficients 

Correlation also 
depends on  
• Noise 
• Sample size 

MORE ON CORRELATION AND CAUSALITY 

N Altman, M Krzywinski, Nature Methods, 12, p899-900, 2015  

Association 

Correlation Causation 

Spurious 
correlation 
coefficients  
in random 
(independent) 
data 

Distribution of 
correlation 
coefficients 

95% 
confidence 
intervals of 
correlation 
coefficients 

MORE ON CORRELATION AND CAUSALITY 

Association 

Correlation Causation 

Why is this important to us?  

• When the number of features is large with respect to the 
sample size, large but spurious correlations frequently occur 

• When there is a large number of observations, small and 
substantively unimportant correlations may appear 
statistically significant 

MORE ON CORRELATION AND CAUSALITY 

“Small data” 
pilot studies 

“Big data”;  
standard of care 
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Association 

Correlation Causation 

Direct          
or           

indirect 

Monotone trends       
or                   

clustering 

X 

MORE ON CORRELATION AND CAUSALITY 

Association 

Correlation Causation X 

X X 

MORE ON CORRELATION AND CAUSALITY 

REPRODUCIBILITY 
RADIOMICS 
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RADIOMICS 
HELPFUL LITERATURE ON STATISTICS AND RELATED TOPICS 

Quantitative 
Imaging 

Biomarkers 
Alliance 

CHALLENGE: ‘MAN VERSUS MACHINE’ 

In radiomics part of the gold-standard ‘truth’ is often subjective, i.e., based on 
human assessment 

“M
an

” 

“Machine” 

RADIOMICS 

• Disagreement between 
“man” and “machine” 

• Inter-radiologist  (and 
intra-radiologist!) 
variability 

• Where is the lesion in the 
image? 

• What is part of the lesion 
and what is not? 

Example: Size measurement 

CHALLENGE: ‘SMALL DATA’ VS. ‘BIG DATA’ 

RADIOMICS 

If the sample does not accurately represent the population of interest,                                
statistics are not meaningful 

Big data                                    Medium data                                 Small data 
Standard  of care                            Clinical trials                                       Pilot studies 

Carefully controlled 
experiment 
• Inclusion and 

exclusion criteria 
for dataset 

‘Real world’ 
• Large and very 

diverse datasets 

Will my results be reproducible and 
generalize? 



8/3/2016 

Drukker/Giger, RSNA 2013 17 

‘SMALL DATA’ CHALLENGE: OVERFITTING 

Many quantitative computer-extracted image-based features usually describe 
a single physical characteristic 

RADIOMICS 

• The ‘machine’ is able to extract much more, and perhaps more useful, 
information than the ‘human’ (hundreds or even thousands of 
quantitative image-based features, i.e., phenotypes) 

• In practice, often data sets of limited size are available for research and 
one needs to be able to obtain a realistic estimate of performance in 
the ‘real world’ 

‘SMALL DATA’ CHALLENGE: OVERFITTING 

Many quantitative computer-extracted image-based features usually describe 
a single physical characteristic 

RADIOMICS 

• Ideally use large training, calibration, and independent test data sets 

• In practice, modest-sized data sets using cross-validation or bootstrapping 
can give reasonable performance estimates when used properly 

• Reduce the number of computer-extracted features through supervised feature 
selection or unsupervised dimension reduction/clustering 

• Parametric stochastic neighborhood embedding, Laplacian eigenmaps…. 

•  Use ‘smart’ classifiers 

• Bayesian neural network, support vector machine, random forest…. 

 

‘SMALL DATA’ CHALLENGE: OVERFITTING 

Many quantitative computer-extracted image-based features usually describe 
a single physical characteristic 

RADIOMICS 

Unsupervised dimension reduction (Laplacian 
eigenmaps) 
• 1000+ lesions 
• 81 image-based features 

Cancer 
Benign 
Cystic 

AJ Jamieson et at, Med. Phys., 37, 339-351, 2010 
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‘BIG DATA’ CHALLENGE: HARMONIZATION AND INTERPRETATION OF RESULTS 

Differences in image acquisition or the population may affect computer-

extracted image-based features 

RADIOMICS 

• Manufacturer 
• Imaging protocol 
• Geographic location 

Racial differences in disease prevalence and characteristics 
• Actual outcome data such as survival may not be available and intermediate 

alternatives may need to be used 
 

N Gruszauskas et al, Radiology, 253, 661-671, 2009 

• Need harmonization, especially for less standardized modalities such as MRI 

• Correlations amongst the many observations may be vast in number but spurious 
or unimportant, causality is much harder to assess 

 

 

REPRODUCIBILITY INVESTIGATIONS 

RADIOMICS 

X. Fave et al, Med Phys, 42, 6784, 2015 X. Fave et al, Comp. Med. Imaging and Graphics 44, p54–61, 2015 

Yesterday 
morning’s 
lecture by 
Laurence Court 

 

 

REPRODUCIBILITY INVESTIGATIONS  

RADIOMICS 

A. Chalkidou et al, PLoSONE 10(5): e0124165 
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REPRODUCIBILITY INVESTIGATIONS  

RADIOMICS 

A. Chalkidou et al, PLoSONE 10(5): e0124165 
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REPRODUCIBILITY INVESTIGATIONS  

RADIOMICS 

A. Chalkidou et al, PLoSONE 10(5): e0124165 
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EXAMPLE OF A RELATIVELY LARGE RADIOMICS STUDY 

RADIOMICS 

Aerts HJWL et al, Nature Communications, DOI: 10.1038/ncomms5006, 2014 
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RADIOMICS 

Aerts HJWL et al, Nature Communications, DOI: 10.1038/ncomms5006, 2014 

EXAMPLE OF A RELATIVELY LARGE RADIOMICS STUDY 

RADIOMICS 

Aerts HJWL et al, Nature Communications, DOI: 10.1038/ncomms5006, 2014 

Concordance index P-values 
(corrected for multiple comparisons) 

Take home message: 
• Modest but robust performance for 2 different cancer types 

in independent datasets 
• So…… if the results of other studies sound too good to be 

true, they probably are? 

 

EXAMPLE OF A RELATIVELY LARGE RADIOMICS STUDY 

REPRODUCIBILITY 
GENOMICS 
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GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Challenges here are amplified with respect to radiomics 

• Whole exomes (20-30K genes), whole genomes (3 billion 
base pairs), with tens of millions of single nucleotide 
polymorphisms (SNPs) etc. 

• Number of samples ~100eds-10,000nds 

Need correction for multiple-hypotheses testing 

GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Want short, reproducible, predictive gene lists (PGLs) 

Hypothesis: Genes most important and relevant for control of the 
malignancy also appear on the list of the most predictive genes 

Ein-Dor et at,  PNAS, 103, 5923-28, 2006 

GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Example: survival prediction in breast cancer 

Authors Technology Number of patients 

Wang et al Affymetrix 286 

van’t Veer et al Rosetta microarrays 96 and 295 

Wang et al, Lancet 365, 671-79, 2005 
van’t Veer et al,  Nature 415, 530-36, 2002 Ein-Dor et at,  PNAS, 103, 5923-28, 2006 
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GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Example: survival prediction in breast cancer 

Authors Technology Number of patients Number of genes 

Wang et al Affymetrix 286 76 

van’t Veer et al Rosetta microarrays 96 and 295 70 

Only 3 genes in 
common! 

Performance was not reproduced, i.e., 
substantially worse, when tested on 

different dataset 
Ein-Dor et at,  PNAS, 103, 5923-28, 2006 

GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Example: survival prediction in breast cancer 

Why these differences?! 

• Can NOT be explained by only  

• Differences in patient cohorts (such as age) 

• Different microarrays used 

• Different methods of data analysis 

 

Different PGLs obtained 
from different training sets 

generated from the same 
patient cohort typically only 
have a few genes in common 

Ein-Dor et at,  PNAS, 103, 5923-28, 2006 

GENOMICS 
CHALLENGE: REPLICATION…. 

• Model for the 
overlap of top PGLs 
obtained in 
replication studies 
(based on “probably 
approximately correct” 
sorting) 

Number of samples 

O
ve

rl
ap

 o
f 

PG
L
s 

Probability distribution 

Only a few percent 
overlap for                                   

realistic sample sizes 

Ein-Dor et at,  PNAS, 103, 5923-28, 2006 
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GENOMICS 
CHALLENGE: REPLICATION….AND MULTIPLE HYPOTHESIS TESTING 

• Expected overlap 
differs for different 
cancer types 

Number of samples 

O
ve

rl
ap

 o
f 

PG
L
s 

Hepatocellular carcinoma 

Lung 

Lung 

Breast 

Breast 

Ein-Dor et at,  PNAS, 103, 5923-28, 2006 

GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

Lazzeroni et at, Molecular Psychiatry, 19, 1336-40, 2014 

Nature publishing group 

GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• Common practice in large-scale genomic studies to use p-
values to choose which of numerous hypothesis test results 
should be pursued in subsequent research 

• But…..p-values themselves are highly variable 

P-values are data dependent statistics that vary from sample to 
sample even when underlying effects, population, and sampling are 

the same 

Obuchowski et al, Stat Methods Med Res (2014) 
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GENOMICS 
CHALLENGE: REPLICATION OF RESULTS AND MULTIPLE HYPOTHESIS TESTING 

• The good news: P-values are not only highly variable, but the 
degree of variability is 

• predictable 

• consistent across most types of statistical studies 

 

Lazzeroni et al, Molecular Psychiatry, 19, 1336-1340, 2014 

The prediction intervals for p-value variability can be computed using only  

• the p-value of the original study 

• the sample size of the replication study relative to that of the 
original study 

GENOMICS 
CHALLENGE: REPLICATION…. 

Lazzeroni et al, Molecular Psychiatry, 19, 1336-40, 2014 

• Alzheimer study 
• 488,911 SNPs 
• 939 individuals 
• Original p-value ~10-8  for a specific 

gene association with entorhinal 
cortical volume 

SJ Furney et al., Mol Psychiatry 16, 1130-38, 2001 

 
Smaller 
p-values 

Smaller 
p-values 

 
 

P-value variability prediction 
for replication study of equal 

size as original study 

Original study: Uncorrected Corrected 

Multiple 
comparisons 

GENOMICS 
CHALLENGE: REPLICATION…. 
• Alzheimer study 
• 488,911 SNPs 
• 939 individuals 
• Original p-value ~10-8  for a specific 

gene association with entorhinal 
cortical volume 

 
Smaller 
p-values 

Smaller 
p-values 

 
 

P-value variability prediction 
for replication study of 

different sizes than original 
study 

Replication study size: 4 times 

¼ times 

Lazzeroni et al, Molecular Psychiatry, 19, 1336-40, 2014 SJ Furney et al., Mol Psychiatry 16, 1130-38, 2001 
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GENOMICS 
CHALLENGE: REPLICATION…. 
• Alzheimer study 
• 488,911 SNPs 
• 939 individuals 
• Original p-value ~10-8  for a specific 

gene association with entorhinal 
cortical volume 

95% confidence intervals for 
most significant p-value 

reported in original study  

Uncorrected 

Corrected 

Lazzeroni et al, Molecular Psychiatry, 19, 1336-40, 2014 

Smaller 
p-values 

 
 

SJ Furney et al., Mol Psychiatry 16, 1130-38, 2001 

REPRODUCIBILITY 
RADIOGENOMICS 

RADIOGENOMICS 
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RADIOGENOMICS 

Y. Yuan website 

Medical Imaging data 

The Cancer Imaging Atlas (TCIA) 

Cellular data 

Molecular/genetic data 

CHALLENGES: ALL CHALLENGES OF RADIOMICS AND GENOMICS COMBINED… 

RADIOGENONOMICS 
EXAMPLE EXPLORATORY STUDY 

Radiomics: MR image-based phenotypes                         
(38 features) 

Genomics:                                                                 
genes from 2 recent breast cancer studies  
(144 features)  
Cancer Genome Atlas Network, Nature 490, (7418), 61 –70, 2012 
Wang  K.  et al., Nucleic Acids Res., 38, , e178 , 0305-1048, 2010 

Guo et al, J. Med. Imag., 
041007, 2015 

Guo et al, J. Med. Imag., 041007, 2015 

Small study: 91 invasive breast cancers 
from TCGA/TCIA 

Study design limits overtraining 
/database bias through  

• the inclusion of only those genes 
previously identified by others as 
potentially useful 

• two-tier cross-validation 

RADIOGENONOMICS 
EXAMPLE EXPLORATORY STUDY 
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Guo et al, J. Med. Imag., 041007, 2015 

RADIOGENONOMICS 
EXAMPLE EXPLORATORY STUDY 

Investigate: relation between radiomics, 
genomics, and combined radiogenomics 
features and estrogen receptor, 
progesterone receptor, human epidermal 
growth factor, tumor stage, and lymph 
node status 

Clinical 
data 

Radiomics 
features 

size 

morphology 

texture 
kinetics 

Guo et al, J. Med. Imag., 041007, 2015 

Overall the prediction performances of 
genomics alone, radiomics alone, and 
combined radiogenomics features showed 
statistically significant correlations with clinical 
outcomes 

Significant associations between radiomic 
features and clinical outcomes 

RADIOGENONOMICS 
EXAMPLE EXPLORATORY STUDY 

DISCUSSION 
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DISCUSSION 
SO…? 

Plenty of challenges remain, including computational and 
statistical aspects. We need 

• Harmonization, standards 

• Full–disclosure reporting: the way in which predictor variables 
were chosen and the description of applied significance tests 
should be as clear as the way in which a dataset was chosen 

• Better access to raw data such as publicly available data sets 
to serve as independent benchmarks 

 
Challenges fuel progress! 

 

THE END 
Thank you 

RERODUCIBILITY INVESTIGATIONS  

RADIOMICS 

A. Chalkidou et al, PLoSONE 10(5): e0124165 
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GENOMICS 
CHALLENGE: COMPREHENSIVE PREDICTION OF CANCER GENOMIC 
INTERACTIONS 

Zhu et al (2014), Nature Methods 

• Interactions inferred by Bayesian Graphical 
Model 

A solution: Zodiac (www.compgenome.org/zodiac) 

IMAGING GENOMICS 
CHALLENGE: PROVIDE A BASIS FOR USING NON-INVASIVE IMAGING 
TECHNIQUES TO INDIRECTLY ASSESS MOLECULAR EVOLUTION OF TUMORS 
AND THEIR CHANGES UNDER TREATMENT 

Quantitative analysis of TCIA breast 
MRI cases (Giger lab) 

Analysis of genomics data from 
corresponding TCGA breast cases (Ji lab) 

TCGA-Assembler 
www.compgenome.org 

Zodiac 

Imaging Genomics analysis of 91 TCIA 
breast cancer cases 

PILOT STUDY ON BREAST TUMORS 

IMAGING GENOMICS 
PATHWAY TRANSCRIPTIONAL ACTIVITIES ASSOCIATED WITH MRI QUANTITATIVE FEATURES 

Zhu et al. To be submitted to Nature Methods 
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Drukker/Giger, RSNA 2013 30 

IMPORTANT STATISTICAL CONCEPTS 

DL Vaux, Nature, 492, p180-81, 2012  


