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Forward problem
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expected data

Inverse problem

r’ reconstruction algorithm
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From the measured projection
data, what is the object that
produced it?

Analytical reconstruction

« Image is produced directly from the
measured data

- E.g., filtered backprOJectlon (FBP)

with r» = 2 cos0 + ysinf

If the data is perfect the image is exact




Iterative reconstruction
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Iterative reconstruction
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Build in an accurate physics model

Real focal spot and detector size AT
Finite size voxel

True ray path (divergent rays)

Beam hardening

Known system imperfections

Motion

Reconstruction algorithm
attempts to correct for effects
built into the model




Taking uncertainty into account

If Warren Buffet and | give you stock predictions,
do you trust them equally?

Are all measured rays
equally reliable?

Analytical recon treats all rays as equally accurate

Optimization method
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X = object "most likely" to produce data Y

can include measurement uncertainty (noise, etc.)
and physical imperfections




Optimization method
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X = object "most likely" to produce data Y

Problems: lack of convergence, noise amplification

Regularization
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prior "knowledge”

measurement uncertainty promote smoothness

Regularization
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measurement uncertainty ~ key parameter, smoothes image




Noise Constraint

F(x) =D(x) + B - R(x)

= t00 noisy

= too smooth

= “just right”
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Regularization
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more p'arameters

Edge-preserving smoothing

Compare local signal differences to expected noise
* low: suppress them (smoothing)

« large: retain them (edge-preserving)

+ medium: smooth a little




Image appearance

edge preserving noise suppression “prior”
favors "plateaus” with sharp edges

. . . SIEMENS
Advantages of Non-Linear Regularization

versus Linear Filtering

IR, 5'iterations - WEFBP, soft kernel (:

Clinical Example
k

e showing blooming reduction in the stent




Regularization

+ Examples
- Quadratic
- Huber
- Total variation
- Wavelets
- Dictionary learning

* Regularizer can introduce
- Nonlinearity
- Non-stationarity
- Bias

Image quality assessment for linear CT @
systems

(Quasi) Noise Linearity
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FBP reconstruction Corresponding noise-only image

W

Image quality assessment for nonlinear @

CT systems

Noise Nonlinearity

MBIR reconstruction Corresponding noise-only image




difference of Veo
recons of two slices

Regularizers operate in 3D
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Slice direction covariance measured in a uniform image
region

IR has lower but wider covariance

Slices are effectively thicker in low contrast region

Noise Model

= Based on x-ray physics (Poisson-
Gaussian counting process)

= Relative degree of confidence in each
measurement as it relates to the image

= Advanced modeling for low signal and
electronic noise

Noise reduction
Artifact
reduction

Courtesy of Jiang Hsieh, GE Healthcare




SIEMENS

Cone-beam Artifact Reduction by IR

I-FBP
2 iterations

Cardiac CT IR w/ motion artifact correction

courtesy of Sandra Halliburton, Philips Healthcare | PHILIPS

Iterative reconstruction
modeling all the physics
very powerful
iterates in both raw data and image domains

can include: statistical uncertainty, system
physics, "prior knowledge", edge-preserving

noise reduction

yields: improved low contrast resolution,
artifact reduction

computationally expensive
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General Approach

For the different objectives of iterative reconstruction, choose the domain
most efficient to accomplish them:

Need low signal data enhancement?
-> work in the raw data domain; apply statistical modeling

Need (cone beam) artifact reduction?
-> need a full raw data/image loop including a forward projection
of images

Need noise reduction?
-> best apply iterative regularization in image domain

[ courtesy of Karl Stierstorfer, Siemens Healthcare

CT image reconstruction

FBP

iterative reconstruction that model statistics and
X-ray physics

- multiple iterations between raw data and
image domains

"Statistical" reconstruction

- edge-preserving noise reduction in image
and/or raw data domains

- much faster than full iterative recon

Reconstruction Algorithms

* Primary goal: dose reduction
= Speed vs. performance tradeoff

Courtesy of Jiang Hsieh, GE Healthcare




Noise (standard deviation in HU)*

* Image noise as defined by IEC standard 61223-3-5, Assessed

From FBP to MBIR

CTDIvol = 1.4 mGy. DLP = 61.8 mGy-cm. Effective dose 0.93 mSv

ASIR 50% ASiR-V 50%

. 1 mm slice thickness
—Standard Recon 10 mGy CTDI,
=0 Standard

™ Recon iDose IMR

- HEE

SD: 15.4 HU
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Tube Current-Time Product
(mAs)

Courtesy of Sandra Halliburton,
Philips Healthcare

using Reference Body Protocol on a CATPHAN phantom. PHILIPS

SNR in nonlinear methods
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Standard deviation in a uniform region

does not predict image quality!

Spatial resolution in IR depends on contrast

FBP Profile Edge response
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Sharpness of a high contrast edge
does not predict sharpness elsewhere!

Spatial resolution is contrast- and
dose-dependent
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Adapted from slide courtesy of Jeff Fessler ‘




Vendor product names

edge-preserving noise iterative recon iterative recon
reduction (in one including model of data | modeling statistics
domain) statistics and physics
GE ASIR ASIR-V
Siemens IRIS SAFIRE ~ ADMIRE
. QDSs/
Toshiba BOOST AIDR 3D | FIRST

CT image reconstruction

FBP (linear)
Linear. Resolution is independent of contrast.
Noise predicts 1Q.

""Statistical" reconstruction (non-linear)
edge-preserving noise reduction

Model-based iterative reconstruction (non-linear)

most effective noise and artifact reduction
slow

Hybrid methods

Non-linear methods have contrast-dependent noise
and resolution behavior

Thank you!




Conclusions

Analytical reconstruction (e.g., FBP) is fast and
ideal when raw data is “perfect”

Tremendous advance in statistical and iterative
reconstruction, certain to continue to evolve

Impact is highest when data quality is poor
low dose, large patients

Significant dose reductions
Differences among methods
We need new image quality metrics




