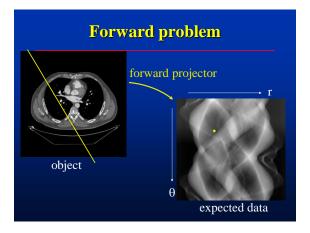
## Overview of CT reconstruction and denoising strategies

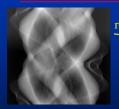


Norbert J. Pelc, Sc.D. Departments of Radiology and Bioengineering Stanford University


#### Acknowledgements

Jean-Baptiste Thibault, Bruno DeMan, Jiang Hsieh (GE Healthcare) Karl Stierstorfer, Thomas Flohr (Siemens Healthcare) Sandra Halliburton (Philips Healthcare) Erin Angel (Toshiba America Medical Systems) Guang-Hong Chen (U. Wisconsin) Jeffrey Fessler (U. Michigan) Scott Hsieh, Dominik Fleischmann (Stanford)

<u>COI Disclosure:</u> Research support from GE Healthcare and Philips Healthcare


#### **Outline**

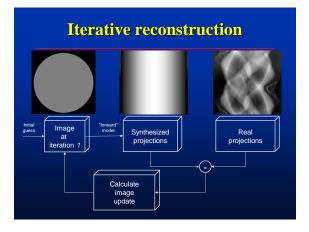
- Introduction
- Model based reconstruction
- Statistical reconstruction
- Non-linear/non-stationary effects
- Conclusions





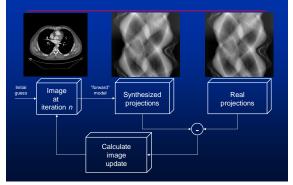
## **Inverse problem**




reconstruction algorithm



From the measured projection data, what is the object that produced it?


#### **Analytical reconstruction**

- Image is produced directly from the measured data
- E.g., filtered backprojection (FBP)  $f(x,y) = \int_{0}^{\pi} \int_{0}^{\infty} P(k,\theta) |k| e^{i2\pi kr} dk d\theta \quad \text{with } r = x\cos\theta + y\sin\theta$
- If the data is perfect the image is exact

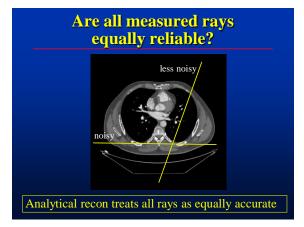




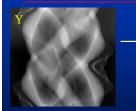

**Iterative reconstruction** 

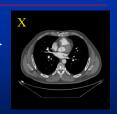


#### Build in an accurate physics model


- Real focal spot and detector size
- Finite size voxel
- True ray path (divergent rays)
- Beam hardening
- Known system imperfections
- Motion
- Reconstruction algorithm attempts to correct for effects built into the model




## Taking uncertainty into account


If Warren Buffet and I give you stock predictions, do you trust them equally?

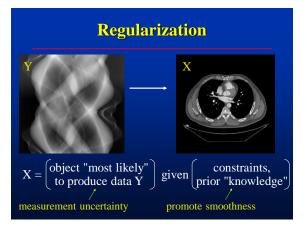




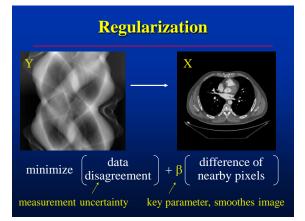
## **Optimization method**

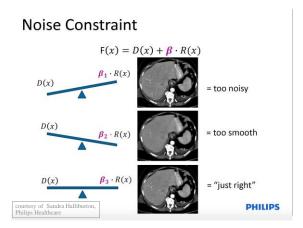




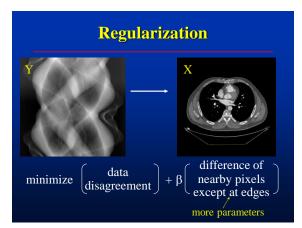

X = object "most likely" to produce data Y can include measurement uncertainty (noise, etc.) and physical imperfections

## **Optimization method**



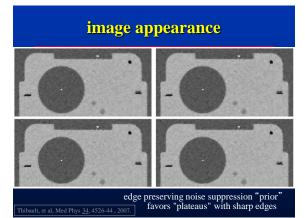

X = object "most likely" to produce data Y **Problems:** lack of convergence, noise amplification

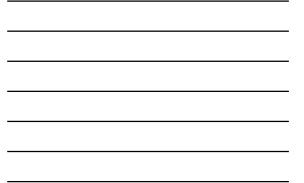


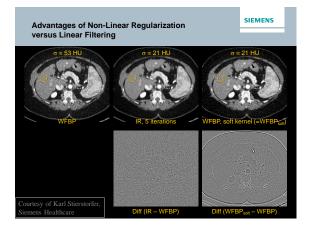




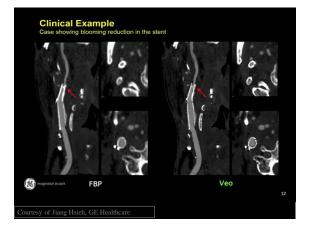


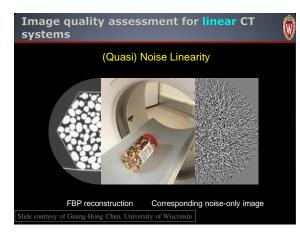

#### **Edge-preserving smoothing**

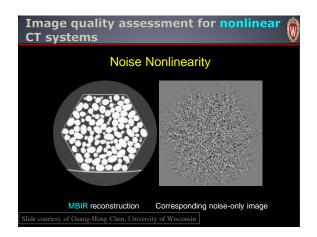

- Compare local signal differences to expected noise
- low: suppress them (smoothing)
- large: retain them (edge-preserving)
- medium: smooth a little

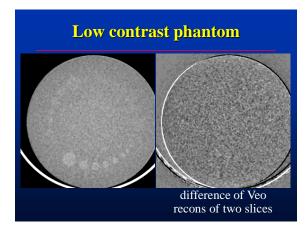


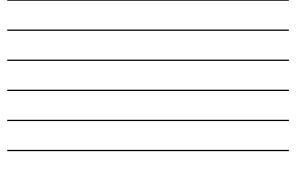




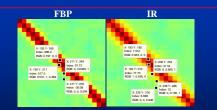


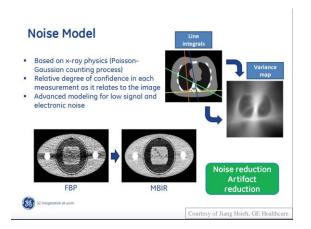


## Regularization

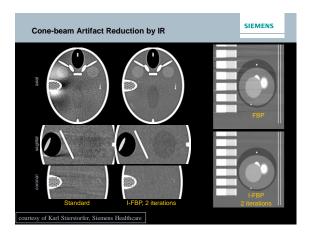

- Examples
  - Quadratic
  - Huber
  - Total variation
  - Wavelets
  - Dictionary learning
- Regularizer can introduce
  Nonlinearity
  Non-stationarity

  - Bias






#### **Regularizers operate in 3D**




- Slice direction covariance measured in a uniform image region
- IR has lower but wider covariance
- · Slices are effectively thicker in low contrast region

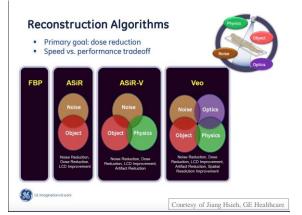






#### Cardiac CT IR w/ motion artifact correction

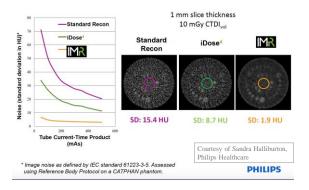



#### **Iterative reconstruction modeling all the physics**

- very powerful
- iterates in both raw data and image domains
- can include: statistical uncertainty, system physics, "prior knowledge", edge-preserving noise reduction
- yields: improved low contrast resolution, artifact reduction
- computationally expensive

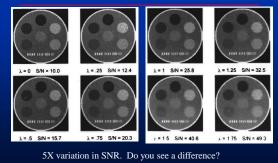

|                                                                                                        | SIEMENS             |
|--------------------------------------------------------------------------------------------------------|---------------------|
| General Approach                                                                                       | STEMENS             |
|                                                                                                        |                     |
| For the different objectives of iterative reconstruction, choose<br>most efficient to accomplish them: | se the domain       |
| Need low signal data enhancement?                                                                      |                     |
| $\rightarrow$ work in the raw data domain; apply statistical mo                                        | odeling             |
| Need (cone beam) artifact reduction?                                                                   |                     |
| → need a full raw data/image loop including a forward of images                                        | ard projection      |
| Need noise reduction?<br>→ best apply iterative regularization in image doma                           | ain                 |
| · ···· ·······························                                                                 |                     |
| © Siemens AG 2015 All rights reserved.                                                                 | r Siemens Healthcan |

## **CT image reconstruction**

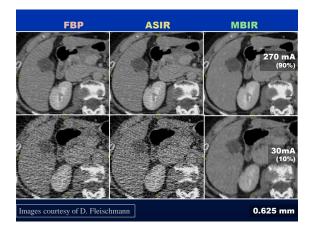

- FBP
- iterative reconstruction that model statistics and x-ray physics
  - multiple iterations between raw data and image domains
- "Statistical" reconstruction
  - edge-preserving noise reduction in image and/or raw data domains
  - much faster than full iterative recon



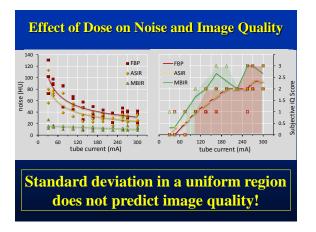






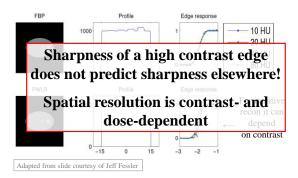







#### **SNR** in nonlinear methods



Harpen, Med Phys 26, 1600-6, 1999.










#### Spatial resolution in IR depends on contrast





| Vendor product names |                                                       |                                                          |                                                       |  |  |  |
|----------------------|-------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|--|--|--|
|                      | edge-preserving noise<br>reduction (in one<br>domain) | iterative recon<br>including model of data<br>statistics | iterative recon<br>modeling statistics<br>and physics |  |  |  |
| GE                   | ASIR                                                  | ASIR-V                                                   | Veo                                                   |  |  |  |
| Philips              | iDos                                                  | se <sup>4</sup> IMR                                      |                                                       |  |  |  |
| Siemens              | IRIS SAF                                              | ADMIRE                                                   | ]                                                     |  |  |  |
| Toshiba              | QDS/<br>BOOST                                         | AIDR 3D                                                  | FIRST                                                 |  |  |  |

## **CT image reconstruction**

- FBP (linear) Linear. Resolution is independent of contrast. Noise predicts IQ.
- "Statistical" reconstruction (non-linear) edge-preserving noise reduction
- Model-based iterative reconstruction (non-linear) most effective noise and artifact reduction slow
- Hybrid methods
- Non-linear methods have contrast-dependent noise and resolution behavior

# Thank you!

## Conclusions

- Analytical reconstruction (e.g., FBP) is fast and ideal when raw data is "perfect"
- Tremendous advance in statistical and iterative reconstruction, certain to continue to evolve
- Impact is highest when data quality is poor low dose, large patients
- Significant dose reductions
- Differences among methods
- We need new image quality metrics