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Forward problem 
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Inverse problem 

From the measured projection 

data, what is the object that 

produced it? 

reconstruction algorithm 

Analytical reconstruction 

• Image is produced directly from the 

measured data 

• E.g., filtered backprojection (FBP) 

• Very efficient 

• If the data is perfect the image is exact  
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Build in an accurate physics model 

• Real focal spot and detector size 

• Finite size voxel 

• True ray path (divergent rays) 

• Beam hardening 

• Known system imperfections 

• Motion 

• Reconstruction algorithm 
attempts to correct for effects 
built into the model 



Taking uncertainty into account 

If Warren Buffet and I give you stock predictions, 
do you trust them equally? 

Are all measured rays  
equally reliable? 

Analytical recon treats all rays as equally accurate  

noisy 

less noisy 

Optimization method 

X Y 

X = object "most likely" to produce data Y 

can include measurement uncertainty (noise, etc.) 
and physical imperfections 



Optimization method 

X Y 

Problems: lack of convergence, noise amplification 

X = object "most likely" to produce data Y 

constraints, 
prior "knowledge" 

Regularization 

X Y 

object "most likely" 
to produce data Y 

X = given 

measurement uncertainty promote smoothness 

Regularization 

X Y 

minimize 
data 

disagreement 
difference of 
nearby pixels 

+ b 

key parameter, smoothes image measurement uncertainty 



courtesy of  Sandra Halliburton,  
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Regularization 

X Y 

minimize 
data 

disagreement 

difference of 
nearby pixels 

except at edges 
+ b 

more parameters 

Edge-preserving smoothing 

Compare local signal differences to expected noise 

• low: suppress them (smoothing) 

• large: retain them (edge-preserving) 

• medium: smooth a little 



image appearance  

Thibault, et al, Med Phys 34, 4526-44 , 2007. 

edge preserving noise suppression “prior” 
favors "plateaus" with sharp edges 
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Advantages of Non-Linear Regularization  

versus Linear Filtering 

•R. Raupach / H IM CR R&D PA •2014-09-17 

IR, 5 iterations WFBP 

 = 53 HU  = 21 HU 

Diff (IR – WFBP) 

(81,167): -110.464

 = 21 HU 

Diff (WFBPsoft – WFBP) 

WFBP, soft kernel (=WFBPsoft) 

Courtesy of Karl Stierstorfer,  

Siemens Healthcare 

(67,169): 3

Courtesy of Jiang Hsieh, GE Healthcare 



Regularization 

• Examples 
- Quadratic 
- Huber 
- Total variation 
- Wavelets 
- Dictionary learning 

• Regularizer can introduce 
- Nonlinearity 
- Non-stationarity 
- Bias 

(Quasi) Noise Linearity  
 
 
 

FBP reconstruction Corresponding noise-only image 

Slide courtesy of Guang-Hong Chen, University of Wisconsin 

MBIR reconstruction Corresponding noise-only image 

Noise Nonlinearity 

Slide courtesy of Guang-Hong Chen, University of Wisconsin 



Low contrast phantom 

difference of Veo 
recons of two slices 

Regularizers operate in 3D 

• Slice direction covariance measured in a uniform image 

region 

• IR has lower but wider covariance 

• Slices are effectively thicker in low contrast region 
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Courtesy of Jiang Hsieh, GE Healthcare 
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Cone-beam Artifact Reduction by IR 
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Standard I-FBP, 2 iterations 

FBP 

I-FBP  

2 iterations 

courtesy of Karl Stierstorfer, Siemens Healthcare 

courtesy of Sandra Halliburton, Philips Healthcare 

IR w/ motion artifact correction 

Iterative reconstruction  
modeling all the physics 

• very powerful 

• iterates in both raw data and image domains 

• can include: statistical uncertainty, system 
physics, "prior knowledge", edge-preserving 
noise reduction 

• yields: improved low contrast resolution, 
artifact reduction 

• computationally expensive 
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General Approach 

 

For the different objectives of iterative reconstruction, choose the domain 

most efficient to accomplish them: 

 

Need low signal data enhancement? 

  work in the raw data domain; apply statistical modeling  

 

Need (cone beam) artifact reduction? 

  need a full raw data/image loop including a forward projection 

of images 

 

Need noise reduction? 

  best apply iterative regularization in image domain 

courtesy of Karl Stierstorfer, Siemens Healthcare 

CT image reconstruction 

• FBP 

• iterative reconstruction that model statistics and 
x-ray physics 

- multiple iterations between raw data and 
image domains 

• "Statistical" reconstruction  

- edge-preserving noise reduction in image 
and/or raw data domains 

- much faster than full iterative recon 

Courtesy of Jiang Hsieh, GE Healthcare 



Courtesy of Jiang Hsieh, GE Healthcare 

Courtesy of Sandra Halliburton, 

Philips Healthcare 

SNR in nonlinear methods 

Harpen, Med Phys 26, 1600-6 , 1999. 

5X variation in SNR.  Do you see a difference? 



0.625 mm 

ASIR FBP MBIR 

270 mA 

(90%) 

30mA 

(10%) 

Images courtesy of D. Fleischmann 

2 mAs

1

0

20

40

60

80

100

120

140

0 60 120 180 240 300

FBP

ASIR

MBIR

tube current (mA) 

n
o

is
e 

(H
U

) 

0

0.5

1

1.5

2

2.5

3

3.5

0 60 120 180 240 300

FBP

ASIR

MBIR

Su
b

je
ct

iv
e 

iQ
 S

co
re

 

tube current (mA) 

Effect of Dose on Noise and Image Quality 

Standard deviation in a uniform region 

does not predict image quality! 

Adapted from slide courtesy of Jeff Fessler 

Spatial resolution in IR depends on contrast 

For iterative 

recon it can 

depend  

on contrast 

Sharpness of a high contrast edge 

does not predict sharpness elsewhere! 

Spatial resolution is contrast- and 

dose-dependent 



Vendor product names 

edge-preserving noise 

reduction (in one 

domain) 

iterative recon 

including model of data 

statistics 

iterative recon 

modeling statistics 

and physics 

GE 

Philips 

Siemens 

Toshiba 

ADMIRE IRIS SAFIRE 

Veo ASIR ASIR-V 

IMR iDose4 

QDS/ 
BOOST AIDR 3D FIRST 

CT image reconstruction 

• FBP (linear) 
Linear.  Resolution is independent of contrast. 
Noise predicts IQ. 

• "Statistical" reconstruction  (non-linear) 
edge-preserving noise reduction 

• Model-based iterative reconstruction (non-linear) 
most effective noise and artifact reduction 
slow 

• Hybrid methods 

• Non-linear methods have contrast-dependent noise 
and resolution behavior 

Thank you! 



Conclusions 

• Analytical reconstruction (e.g., FBP) is fast and 

ideal when raw data is “perfect” 

• Tremendous advance in statistical and iterative 

reconstruction, certain to continue to evolve 

• Impact is highest when data quality is poor 
low dose, large patients 

• Significant dose reductions 

• Differences among methods 

• We need new image quality metrics 


