

## Cynthia McCollough, PhD

CT Clinical Innovation Center, Department of Radiology Mayo Clinic, Rochester, MN

## T MAYO CLINK

## On behalf of our team at Mayo Clinic

Co-leaders

MAYO CLINIC

- JG Fletcher, MD
- Lifeng Yu, PhD
- Shuai Leng, PhD
- Rickey Carter, PhD
- David Holmes III, PhD

#### With special thanks to Farhana Khan of AAPM headquarters staff

- Trainees – Baiyu Chen, PhD
- Kyle McMillan, PhD
- Chi Ma, PhD
- Staff
- Tammy Drees
  - Greg Michalak, PhD
  - Alice Huang
  - Kris Nunez
  - Shane Dirks



www.aapm.org/GrandChallenge/LowDoseCT



## **Radiologist Interpretation**

- Host site provided radiologist interpretation of twenty test cases
- Reader pool was composed of senior residents, fellows, and faculty.
- No reader read the same case twice.
- Cases from any given participant were dispersed among readers so as to minimize the impact of reader bias on any one participant.
- A standardized reading tool was used for marking of the lesions.
- Rigorous reader training was performed to ensure consistent marking between readers.
- For each case, the radiologist was required to mark the location of any detected metastasis, or to grade the case as normal if no lesions are detected.

## T MAYO CLINK

## Reading design

- Given the time constraints and the high potential of recall (e.g., 20 cases shown repeatedly with limited washout time), we designed a Latin squares reading framework.
- Design assumes that readers will be exchangeable in performance. Differences in individual reader performance is assumed to be distributed uniformly across participants.

|    | Fa | uent ca | 962 |    |  |
|----|----|---------|-----|----|--|
|    | C1 | C2      |     | Cc |  |
| R1 | P1 | Рр      |     | P2 |  |
| R2 | P2 | P1      |     | Рр |  |
|    |    |         |     |    |  |
| Rr | Рр | P2      |     | P1 |  |

## T MAYO CLINE

### Scoring

- Reader lesion markings (or notation of case as normal) were compared to reference standard for each case and data scored on a per lesion and per case basis.
- Reader markings were considered correct if the location marked as center of the lesion fell anywhere within the true lesion's boundaries.
- Per lesion scoring (included penalty for false positive and negative markings):
  - +1 for true positive marking of a lesion (correctly marking a le
  - -1 for false positive marking of a lesion (no lesion exists at that location)
  - -1 for false negative (a lesion exists that was not marked)
- Per case scoring (included penalty for false positive and negative markings):
  - +1 for true negative case (no lesions marked in a case with no lesions)
    +1 for true positive case (at least one lesion was correctly marked in a case with lesions)
  - -1 for false negative (no lesions marked in a case that had lesions)
  - -1 for false positive (at least one lesion marked in a case with no lesions)

## Scoring

- Per lesion normalized score (NS) = per lesion score / total number of lesions x 100%
- Per case normalized score (NS) = per case score / 20 X 100%
- False positive and false negative markings could result in a negative score
- Overall performance score was calculated as:

#### [per lesion NS] + [per case NS]] ÷

 In the event of a tie, JAFROC figure of merit (AUC), which takes into account reader confidence, was used.

# MAYO CLINIC

# Library of patient CT projection data

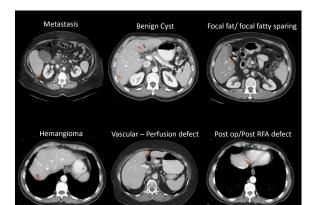
The library

- stores projection data in an open and standardized format



## MAYO CLINIC

# Library of patient CT projection data


#### The library

- stores projection data in an open and standardized format
- includes scans of various types
  - Routine non-contrast head exams
  - Low dose non-contrast chest exams for lung nodule screening
  - Routine contrast-enhanced abdomen exams

# Library of patient CT projection data

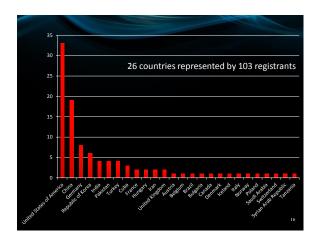
## The library

- stores projection data in an open and standardized format
- includes scans of various types
- Routine head exams
- Low dose chest exams for lung nodule screening
- Routine contrast-enhanced abdomen e
- Gated exams
- Dual-energy exa
- includes a wide range of patients and pathologies

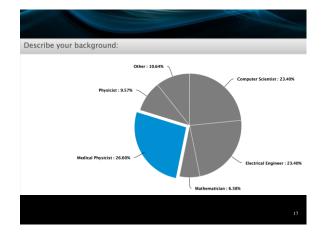


## MAYO CLINIC

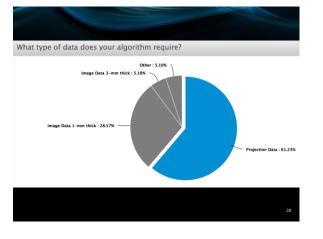
# Library of patient CT projection data


#### The library

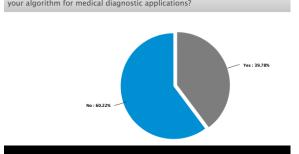
- stores projection data in an open and standardized format
- includes scans of various types
- Routine head exams
- Low dose chest exams for lung nodule screening
- Routine contrast-enhanced abdor
- Gated exams
- Dual-energy exam
- includes a wide range of patients and pathologies
- includes various radiation dose levels
  - Clinical/regular dose levels
  - Reduced dose levels (simulated via noise insertion\*)


# Cases shared

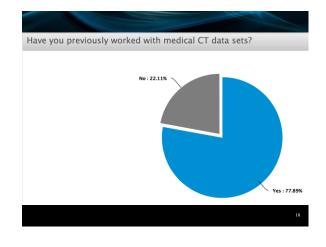
- 10 training patient cases + ACR CT Phantom scan
  - Projection and all image data sets, full and low dose
    - 1 and 3 mm thick images
    - B30 and D45 reconstruction kern
- 20 test patient cases + ACR CT Phantom scan
  - Projection or one image data set, low dose only


1

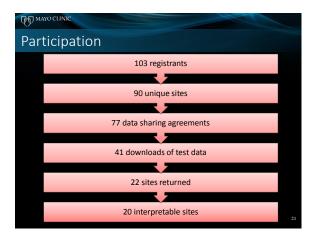








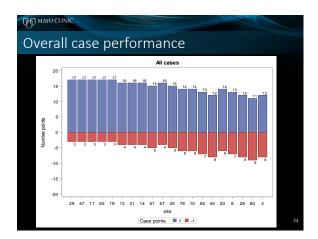





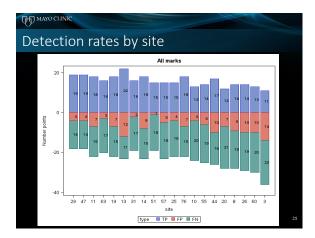

Have you previously collaborated with a radiologist regarding optimization of your algorithm for medical diagnostic applications?











| PI Name                 | Institute                                         | Country           |
|-------------------------|---------------------------------------------------|-------------------|
| Licheng Cheng           | Shanghai United Imaging Healthcare Co, Ltd.       | China             |
| Yang Chen               | Southeast University                              | China             |
| Xuanqin Mou             | Xi'an Jiaotong University                         | China             |
| Wei Liu                 | Xidian University                                 | China             |
| Miao Wang               | Xidian University                                 | China             |
| Linlin Chen             | Xidian University                                 | China             |
| David Hansen            | Aarhus University Hospital                        | Denmark           |
| Oliver Taubmann         | Friedrich-Alexander-University Erlangen-Nuremberg | Germany           |
| Felix Kopp              | Technische Universitat Munchen                    | Germany           |
| Sebastian Allner        | Biomedical Physics TUM                            | Germany           |
| Zsolt Balogh            | Budapest Business School                          | Hungary           |
| Bjorgheidur Helgadottir | Raforninn/Image Owl                               | Iceland           |
| Nam-Yong Lee            | Inje University                                   | Republic of Korea |
| Eunhee Kang             | KAIST                                             | Republic of Korea |
| Sunhee Wi               | KAIST                                             | Republic of Korea |
| Nghia Vo                | Diamond Light Source                              | United Kingdom    |
| Larry Zeng              | University of Utah                                | US                |
| Cristian Badea          | Duke University                                   | US                |
| Kyungsang Kim           | Massachusetts General Hospital                    | US                |
| Joshua Trzasko          | Mayo Clinic                                       | US                |
| Ashvin George           | Instarecon Inc                                    | US                |
| Dan Ruan                | UCLA                                              | US                |

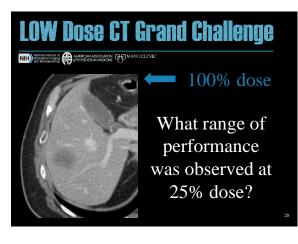


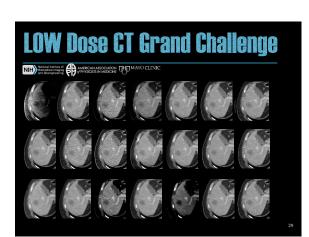






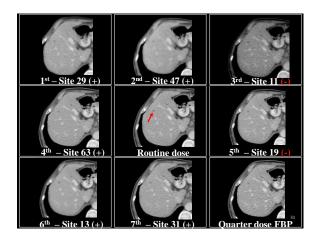




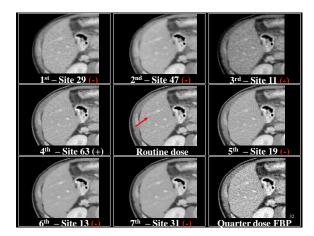


|      | 00      | ult              | S                        |                |                        |                |     |     |
|------|---------|------------------|--------------------------|----------------|------------------------|----------------|-----|-----|
| Rank | Site    | Lesion<br>points | Norm.<br>lesion<br>score | Case<br>points | Norm.<br>case<br>score | Total<br>score | AUC |     |
| 1    | 29      | 1                | 0.03030                  | 14             | 0.7                    |                |     |     |
| 2    | 47      | 1                | 0.03030                  | 14             | 0.7                    | 0.3652         |     |     |
| 3    | 11      | -4               | -0.12121                 | 14             | 0.7                    |                |     | US  |
| 4    | 63      | -4               | -0.12121                 | 14             | 0.7                    | 0.2894         |     |     |
| 5    | 19      | -4               | -0.12121                 | 14             |                        | 0.2894         | _   | l I |
| 6    | 13      | -1               | -0.03030                 | 12             |                        | 0.2848         |     |     |
| 7    | 31      | -3               |                          | 12             |                        | 0.2545         |     |     |
| 8    | 14      | -5               |                          | 12             |                        | 0.2242         |     |     |
| 9    | 51      |                  | -0.12121                 | 10             |                        | 0.1894         |     |     |
| 10   | 57      | -8               |                          | 12             |                        | 0.1788         |     |     |
| 11   | 25      | -7               | -0.21212                 | 10             |                        | 0.1439         |     |     |
| 12   | 76      | -4               |                          | 8              |                        | 0.1394         |     |     |
| 13   | 10      |                  | -0.33333                 | 8              |                        | 0.0333         |     |     |
| 14   | 55      | -11              | -0.33333                 | 6              | 0.3                    |                |     |     |
| 15   |         |                  | -0.27273                 | 4              | 0.2                    |                |     |     |
| 16   | 20      |                  |                          | 8              | 0.4                    |                |     |     |
|      |         |                  | -0.42424                 | 6              | 0.3                    |                |     |     |
| 18   | 26      |                  | -0.45455                 | 4              | 0.2                    |                |     |     |
| 19   | 60<br>3 |                  | -0.51515<br>-0.75758     | 2              | 0.1                    |                |     |     |



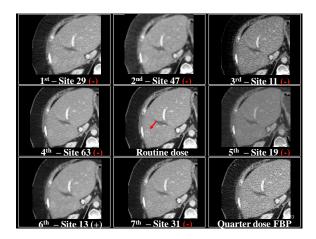
| MAYO CLINIC       | Rank | Site # | Data type |
|-------------------|------|--------|-----------|
|                   |      | 29     |           |
| Source data types |      |        |           |
| ,1                | 3    | 11     | 3 mm D45  |
| Projection -10    |      |        | 3mm B30   |
| 3 mm D45 - 1      |      |        | 1 mm D45  |
| 3 mm B30 - 3      |      |        |           |
|                   |      |        | 3 mm B30  |
| 1 mm D45 - 1      |      |        | 1 mm B30  |
| 1 mm B30 - 5      |      |        | 1 mm B30  |
|                   |      |        |           |
|                   |      |        | 1 mm B30  |
|                   |      |        | 1 mm B30  |
|                   |      |        |           |
|                   |      |        | 1 mm B30  |
|                   |      | 44     |           |
|                   |      |        |           |
|                   |      |        |           |
|                   |      |        |           |
|                   |      | 60     | 3mm B30   |
|                   |      |        |           |



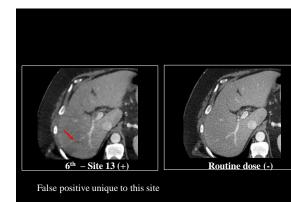


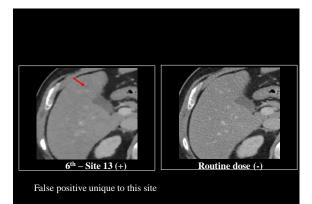



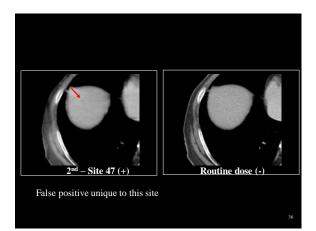

| 1 <sup>st</sup> – Site 29 (+) | 2 <sup>nd</sup> – Site 47 (+) | 3 <sup>rd</sup> – Site 11 (+) |
|-------------------------------|-------------------------------|-------------------------------|
| $4^{th}$ - Site 63 (+)        | Routine dose                  | 5 <sup>th</sup> - Site 19 (+) |
| $6^{\text{th}}$ – Site 13 (+) | 7 <sup>th</sup> - Site 31 (+) | Quarter dose FBP              |

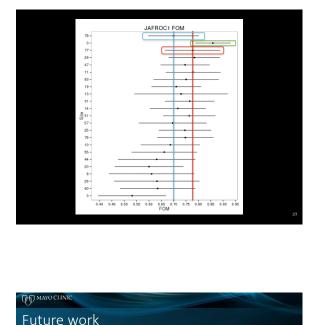















## Future work

- Evaluate demographic data, looks for trends
  - Image domain vs projection domain data
  - Algorithm processing speed
  - Who worked with a radiologist
  - Etc.
- Evaluate top performers with full MRMC study design
  - Validate the pseudo observer approach used with full . MRMC study
- Evaluate phantom data to predict MRMC results
  - Are there unique properties or "looks" that did best

| <u>1<sup>st</sup> – Site 29</u> | <u>2<sup>nd</sup> – Site 47</u> | <u>3<sup>rd</sup> – Site 11</u> |
|---------------------------------|---------------------------------|---------------------------------|
|                                 |                                 |                                 |
| 4 <sup>th</sup> – Site 63       | Routine dose                    | 5 <sup>th</sup> – Site 19       |
|                                 |                                 |                                 |
| 6 <sup>th</sup> – Site 13       | 7 <sup>th</sup> – Site 31       | Quarter dose FBP                |

# And the Winners are ...

- 3<sup>rd</sup> Dr. Larry Zeng, Professor of Engineering at Weber State University in Ogden, Utah
- 2<sup>nd</sup> Eunhee Kang, PhD student at the Korea Advanced Institute of Science and Technology in South Korea, her colleague, Junhong Min, and her advisor, Dr. Jong Chul Ye.
  - Dr. Ye will be presenting
- 1st Dr. Kyungsang Kim, post-doctoral research fellow at Massachusetts General Hospital in Boston, Massachusetts, and his advisor, Dr. Quanzheng Li.
  - Dr. Kim will be presenting