

Hands-on GE SenoClaire DBT: technical characteristics & quality control

Razvan Iordache, Ph.D.
GE Healthcare

Imagination at work

Disclosures and Acknowledgements

Razvan Iordache

• Employee of GE Healthcare

Thanks to:

Laura Hernandez (GE Healthcare) Luc Katz (GE Healthcare) Remy Klausz (GE Healthcare) Serge Muller (GE Healthcare) Jean-Marc Peyronnet (GE Healthcare) Henri Souchay (GE Healthcare)

Our clinical collaborators for providing example cases

Tomosynthesis is analogous to a photography focus sweep

A purple flower stands next to a blue one

AAPH 2016 | 2 August 2016

Outline Technical datasheet GE DBT (3D) technology Clinical examples Quality control	
Datasheet	
®	
SenoClaire is an upgrade for Senographe Essential	

Tec	hnical characteristics for 3	D	5		
	Detector size [cm] & type	24 x 30 Indirect: a-Si + CsI(Tl) scintillator	E E		
	Detector pixel size [um]	100	4 50		
	Detector motion	Static	16		
	X-ray tube target	Mo or Rh	a do ca		
	X-ray tube filtration	0.03 mm Mo or 0.025 mm Rh	8		
	X-ray tube motion	Step-and-shoot	oes o	-	
	Anti-scatter grid	Linear, grid ratio: 5:1, grid pitch: 100 um	ÿ		
	Angular range [deg] / Number of projections	25 / 9	e e		
	Scan time [s] AGD 3D : AGD 2D	<10* 1:1	£ 18		
			d d		
	Reconstruction algorithm Volume representation	Iterative: ASIR ^{DET} Planes & slabs	spuse		
	Planes geometrical characteristics	100 um pixel size, z-sampling 0.5 mm or 1 mm	de per		
	Slabs geometrical characteristics	100 um pixel size, 2-sumpling 0.5 mm of 1 mm	is the		
	DICOM format for planes, slabs & V-Preview	DICOM Breast Tomosynthesis object (BTO)	8 8		
-	Supported DICOM BTO syntax transfer	Uncompressed, lossless JPEG & lossy JPEG	128		
%	AAPH 2016 2 August 2016		, F		
G	E DBT (3D) techn	ology			
G		ology			
33					
~					
Т					
rec	hnology optimization strate	egy			
Opti	imize				•
	Projection images				
	Acquisition configuration (nu	ımber of projections			
	dose distribution, angular ra	nge)			
	Reconstruction algorithm				
	Image coding and presentat	ion			
w	hile preserving the same AGD o	as in 2D			
	-				
8					
-	AAPH 2016 2 August 2016				

Projection images	
Resolution Apparent focal spot Detector pixel pitch Dose/IQ optimization Scatter management AEC & Beam quality	
and count organization	
Resolution: detector pixel pitch	
Native Binning Binning	
Preserve resolution performace equal to 2D but requires fast read-out and high DQE at low dose requires fast read-out and high DQE at low dose	
APPN 200612 August 2006.	
Resolution: apparent focal spot size When the object (or the tube) moves during acquisition, the object is blurred in the	
direction of the motion (red arrow), but not in the direction orthogonal to the motion (blue arrow)	
blurred – spatial resolution is reduced Orthogonal to motion: object not blurred – spatial resolution maintained	
Step-and-shoot avoids motion blur Spatial resolution is maintained in	
all directions ANY 2005 2 Juges 2014	

Resolution: MTF of projections	
A PARTICLE AND	
step & shoot tube motion, continuous tube motion, continuous tube motion, detector native resolution detector native resolution detector binning Loss in spatial resolution	
compared to 2D in all directions direction compared to 2D in compared to 2D in both directions sweep direction only directions of the direction of the dire	
ANY SELECT AND ASSESSMENT OF SELECT ASSESSMENT OF S	
Develotion AFF of almost (allows)	
Resolution: MTF of planes (slices)	
0.0 1	
00 1 2 3 5 6 6 7 7 8	
spatial frequency (mm 1) N Morsholl, H Bonnous, 29th consul meeting of BePA, Feb. 2014, Neplication of the draft EURES protocol for QC of digital breast tomograthesis IDB11 systems*, http://2014.bhips.su/up-content/uploade/formidable/Morsholl, Nicolasp pdf	
AMPR 2004 I August 2008	
Scatter mgt: grid or no grid?	
Original image Scatter reduces image contrast and increases noise	
Image processing can recover the contrast but not the	
noise For thick breasts that create a lot of scatter, image quality is deteriorated or higher dose is needed to overcome the increased noise	

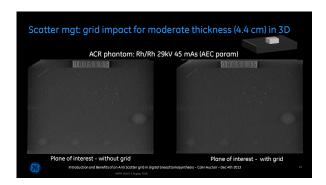
Scatter mgt: 2D/3D antiscatt	er grid	(1/3)
------------------------------	---------	-------

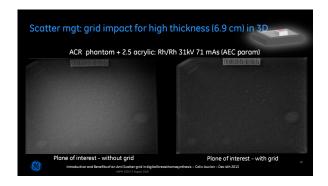
2D/3D grid

GE SenoClaire uses an antiscatter grid for 2D & 3D imagng

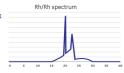
Scatter mgt: 2D/3D antiscatter grid (2/3)

Grid pattern 100µm CsI Pixel matrix Each pixel coincides with one grid line Therefore each pixel gets the same signal First order grid structure is eliminated in the image Some additional oscillation will totally remove grid structure 100µm


Scatter mgt: 2D/3D antiscatter grid (3/3)


Challenge: rotating the grid leaves very little space for the grid to move Solution:

- match the grid line frequency to the detector pitch
- compact, high precision actuators driving small movements: piezoelectric transducers

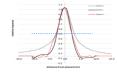


AEC & beam quality

Take advantage of the Mo&Rh dual track tube to optimize CNR/dose ratio

- Low patient doseDense breast penetration

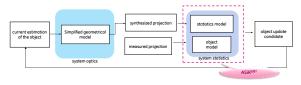
Same beam quality used for all projections



3D	acquisition configuration	
Swe	eep angle	
Nur	mber of projections nd uniform dose distribution	
a	na uniform dose distribution	
8	п.	
	AMPH 2006 [1 August 2006	
SW	eep angle	
	With a wider sweep angle you can separate closer objects	
83	AMPH 2016 (2 August 2016	
	mber of projections *5 proj * 21 proj * 31 proj * 12 proj * 31	
-	Increase vertical resolution	
> Veri	tical resolution is limited by the angular range, and the oo 0 2 4 6 8 10 Vertical Location (mm)	
> Incr	ain the best possible ASF reasing the number of projections beyond that required os inimize out-of-plane artifacts does not further improve yg os 15 proj 25 proj 25 proj 15 proj 26 proj 26 proj 27 proj 27 proj 28 proj 29 proj	
the ➤ In-p	Vertical resolution (southers deep)	
	For typical DBT sweep angles,	
rel	latively few projections are required	

Z-resolution (using 1 mm Al sphere)

 $\begin{aligned} & \text{ArtefactSpread Function (ASF):} \\ & ASF(z) = \frac{\bar{\mu}_S(z) - \bar{\mu}_B(z)}{\bar{\mu}_S(z_0) - \bar{\mu}_B(z_0)} \\ & \bar{\mu}_{S} \text{: } \\ & \underline{\mu}_{S} \text{: } \\ & \text{Mean DU values of the sphere} \\ & \underline{\mu}_{B} \text{: } \\ & \text{Mean DU values of the background} \\ & \underline{z}_{S} \text{: } \\ & \text{Off-focus plane} \end{aligned}$

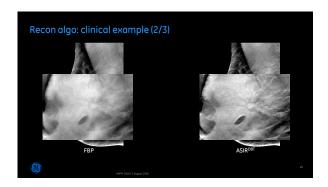


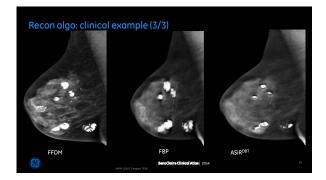
For real DBT systems, z-resolution is larger for larger sweep angle

	Geometry
System a	15 projections over 15°
System b	9 projections over 25°
System c —	25 projections over 50°

MMarshall, H.Bosmans, 29th annual meeting of BHMA feb. 2014, "Application of the draft EUREF protocol for QC of digital breasttamosynthesis (DBT) systems http://2014.bhtpa.eu/wp-content/uploads/formidable/Marshall_Nicoles.pdf


Reconstruction algorithm




ASiR^{DBT} (Adaptive Statistical Iterative Reconstruction) enables dose reduction and mitigation of artefacts

AAPH 2016 | 2 August 2

Image Coding & Presentation

3D dataset

Volumes (planes & slabs)

2D synthetic view (V-Preview*)

DICOM format

Breast tomosynthesis objects (BTO)

 $\hbox{\tt *for navigation use only, not a replacement to FFDM}$

2016 12 doment 2016

0.5mm or 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation of 1.0mm distance 1 cm thick, 5mm overlap formation over	* Synthetic 2D use only, not a FFRM*
APPY 2001 Proper 2008	
GE slabs GE developed a specific slabbing algorithm able to render calcifications as if each of them were in their optimal plane GE slabs mitigate DBT artifacts not well managed by standard slabbing techniques (average and MIP) GE S	FORT MIP SLABS SLABS
Breast Tomo Object	DICOM
It is a multi frame object = One DICOM object with several 2D imag N Mono-Frame Images N Object, N Heeders ONE Multi-Frame Image	ges
Shared Header Per-frame header Pivel data (not to scale)	

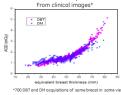
SenoClaire exam size

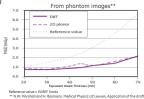
Exam = (9 projections + planes + slabs) x 2 + (2D raw + 2D processed) x 2 Size of each 3D frame -> Cropping ratio -> Breast size

Consider 3 case examples:

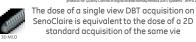
	Thickness	Cropping Ratio	No. Of slabs	No. of planes (0.5mm)	No. of planes (1mm)
Small Breast	14mm	10:1	4	39	20
Medium Breast	44mm	3:1	10	99	50
Large Breast	80mm	1:1	18	171	86

Exam size depends on: Number of 3D frames -> Z-Sampling (1 mm vs 0.5 mm) & breast thickness

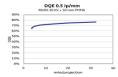

Small breast exam (1.0 mm z-sampling): Medium breast exam (1.0 mm z-sampling): Large Breast exam (1.0 mm z-sampling): ~390 MB ~900 MB ~3,300 MB


BTO lossless compression

DICOM default lossless compression supported


- · Decompressed image is identical to original
- JPEG Lossless, Non-Hierarchical, First-Order Prediction [Selection Value 1]) 1.2.840.10008.1.2.4.70

AGD for a 3D acquisition (1/2)



12

AGD for a 3D acquisition (2/2)

Enabling factors

- Detector DQE at low dose
- Use of an antiscatter grid
- ASiR^{DBT} reconstruction algorithm

AAPH 2016 | 2 August 2016

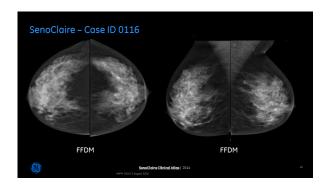
Clinical aspects

3

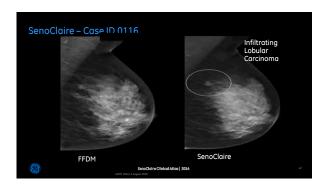
GE SenoClaire indications for use*

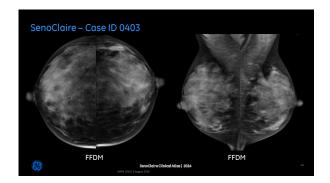
SenoClaire acquires 2D images and also acquires multiple projection views to produce 3D DBT images suitable for screening and diagnosis of breast cancer. The SenoClaire option can be used for the same clinical applications as traditional mammography for screening mammography.

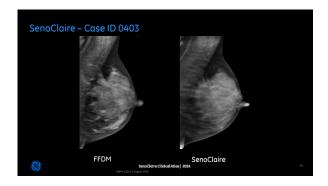
A screening examination will consist of:


- A 2D image set consisting of a craniocaudal view and of a mediolateral oblique view, or
- A 2D craniocaudal view and 3D mediolateral oblique image set.

The SenoClaire Digital Breast Tomosynthesis (DBT) option to Senographe Essential FFDM system may also be used for additional diagnostic workup of the breast.


* Premarket Approval Application (PMA) Number: P130020




AAPH 2016 | 2 August 201

Quality control	
SenoClaire QC manual	
71 pages	
Adds specific tests to be executed in addition to those from Senographe Essential QC	
Essential Qu	
Surregraph Exercised Gualty Curries Manual	
Section 4 to Secti	
A091 2004 (2 August 2004	
SenoClaire QC – Radiologic technologist	
SenoClaire	
GE Breast Tomospethrole Quality Control Minnual	
Samon of the second sec	
AAPY 2006 17 August 2005	

\cap	tocto	for the	radiologic	tachna	logict
Ųυ	iesis	TOT LITE	radiologic	techno	iogist

Minimum	Test	Essential	
frequency	Test	No X	2D
Daily	Monitor cleaning	х	
Weekly	Flat-field		Х
Weekly	Phantom IQ		Х
Weekly	CNR & MTF		х
Weekly	Viewbox & viewing	х	
Monthly	AOP mode & SNR		х
Monthly	Visual checklist	х	
Quaterly	Repeat analysis	х	
Semi-anually	Compression force	×	

	Quaterly	ricpeat analysis	. "				
	Semi-anually	Compression force	×				
_							
33		AAPH 2016 2 August 2016			49		

$\ensuremath{\mathsf{QC}}$ tests for the radiologic technologist

Minimum	Took	Test Essential		SenoClaire (w/ MTD)			
frequency	rest	No X	2D	No X	2D	3D	
Daily	Monitor cleaning	х					
Weekly	Flat-field		Х			Х	
Weekly	Phantom IQ		Х		х	х	
Weekly	CNR & MTF		х		×		
Weekly	Viewbox & viewing	х					
Monthly	AOP Mode & SNR		х		×	х	
Monthly	Visual checklist	х		×			
Quaterly	Repeat analysis	х					
Semi-anually	Compression force	×		×			
Monthly	Grid texture	L			Х		

SenoClaire tests ... same as Essential tests

Minimum	Test	Esse	ntial	SenoClaire (w/ MTD)			
frequency	1000	No X	2D	No X	2D	3D	
Daily	Monitor cleaning	х					
Weekly	Flat-field		X			Х	
Weekly	Phantom IQ		х		х	х	
Weekly	CNR & MTF		Х		х		
Weekly	Viewbox & viewing	Х					
Monthly	AOP mode & SNR		х		х	х	
Monthly	Visual checklist	х		х			
Quaterly	Repeat analysis	Х					
Semi-anually	Compression force	×		×			
Monthly	Grid texture				х		

SenoClaire tests ... specific visual checklist

Minimum	Test	Essential		SenoClaire (w/ MTD)			
frequency	lest	No X	2D	No X	2D	3D	
Daily	Monitor cleaning	х					
Weekly	Flat-field		X			X	
Weekly	Phantom IQ		Х		х	х	
Weekly	CNR & MTF		х		×		
Weekly	Viewbox & viewing	х					
Monthly	AOP mode & SNR		х		х	×	
Monthly	Visual checklist	х		х			
Quaterly	Repeat analysis	х					
Semi-anually	Compression force	×		×			
Monthly	Grid texture				×		

100	
361	
•	

Visual checklist (monthly)

Objective To assure that GE Breast Tomosynthesis indicator lights, displays, and mechanical locks and detents are working properly and that the system is mechanically stable.

Equipment required

Visual checklist Chart 5. Grid texture test, Visual Checklist and Compression Record of Checks (page 36).

Review each item on the visual checklist and indicate its status

Action limit

Each of the items listed in the Visual Checklist must pass (ie, receive a check mark)

SenoClaire tests \dots new grid texture test

Minimum	Test	Essential		SenoClaire (w/ MTD)			
frequency	1000	No X	2D	No X	2D	3D	
Daily	Monitor cleaning	х					
Weekly	Flat-field		X			Х	
Weekly	Phantom IQ		Х		×	Х	
Weekly	CNR & MTF		х		×		
Weekly	Viewbox & viewing	х					
Monthly	AOP mode & SNR		Х		х	х	
Monthly	Visual checklist	х		х			
Quaterly	Repeat analysis	х					
Semi-anually	Compression force	×		×			
Monthly	Grid texture				х		

Objective Measures the amount of grid texture in 2D images

Equipment required Flat-field test object

- Procedure

 Automatic acquisition of 10 2D images with increasing mAs
 Record the dispayed test results

The texture level must not exceed 0.002

Grid texture test (monthly)

SenoClaire tests ... 3D "Extensions"

Minimum	Test	Essential		SenoClaire (w/ MTD)			
frequency	1000	No X	2D	No X	2D	3D	
Daily	Monitor cleaning	×					
Weekly	Flat-field		X			Х	
Weekly	Phantom IQ		Х		х	х	
Weekly	CNR & MTF		Х		х		
Weekly	Viewbox & viewing	Х					
Monthly	AOP mode & SNR		Х		х	Х	
Monthly	Visual checklist	х		×			
Quaterly	Repeat analysis	х					
Semi-anually	Compression force	×		×			
Monthly	Grid texture				х		

Flat-field 3D t	est (weekly)			1		
	nd homogeneity of when anes through a flat field ph	antom				_
Equipment requir	ed					_
Procedure • Automatic 3D a						
Record the disp	Test no uniformity men no uniformity men no uniformity	Neartrement LpL 14.17 8/A 55.01 M/A	USL Statum 15.00 PASS 50.00 FAIL			_
Action limit Both Brightness r	configuration con-uniformity* and SNR no	30				_
88	* Calculated in the plane at 10 mm					
						_
Phantom IO 3	D test (weekly)			_		
Objective	and consistent IQ of 3D im	nges				_
Equipment requir	ed	ages				_
ACR mammograp Procedure	phy accreditation phantom					_
	with Rh/Rh track/filter, 29 k es and slabs	V, 56 mAs				_
Action limit	e: Fibers ≥ 4, Speck groups	3 Massas 3				_
	me technique & action		est			_
8	AAPH 2016 2 August 2016		59		 	_
SenoClaire DE	BT ACR phantom soft	copy submission	to FDA			_
						_
	dammo Workstation)					
E-Print the plan	e of interest and send it	: by email				
	Mammo Workstation 4.7 MF					_
installed on the	planes on a DICOM CD/ CD/DVD	WITH GE MEDIA עיעט	viewer			_
®			6	60		_
~	AAPH 2016 2 August 2016					

Δ	\cap	って	ח	ck	nec	ы	m	Λn	ıth	L۷

Objective Check that the correct parameters are selected in AOP 3D mode

Equipment required
Set of acrylic plates (same as for the AOP 2D Check)

- Procedure

 3D AOP acquisition on 25mm, 50mm, and 60 mm of acyrlic

 Record the exposure parameters

Action limit	Acrylic Thickness	Exposure parameters						
Action innic	(mm)	Track/Filter	mAs	kV				
	25	Mo/Mo or Mo/Rh	20-70	26				
	50	Rh/Rh	40-90	29				
(CO)	60	Rh/Rh	50-120	30 or 31				
(06)								

AOP 3D check (monthly)

Displayed results

SenoClaire QC – Medical physicist

		100	
OC tests	tor the	medical	l physicist

Test	Esse	ntial
1456	noX	2D
Flat-field		Х
Phantom IQ		х
CNR & MTF		Х
AOP mode & SNR		Х
Artifact eval & flat-field unif		Х
Collimation (2 alternatives)		Х
Sub-system MTF or Focal spot perf		Х
Breast entrance exposure, AGD, reproducibility		Х
Flexible paddle deflection	Х	
kVp accuracy and reproducibility		Х
HVL		х
Mammo unit assembly eval	Х	

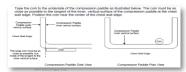
PH 2016 | 2 August 2016

QC tests for the medical physicist

Test	Esse	ntial	Send	Claire (w/	MTD)
Test	noX	2D	noX	2D	3D
Flat-field	i	X			X
Phantom IQ		X		X	X
CNR & MTF		Х		Х	
AOP mode & SNR		Х		Х	X
Artifact eval & flat-field unif		X		X	
Collimation (2 alternatives)		X			
Sub-system MTF or Focal spot perf		Х			
Breast entrance exposure, AGD, reproducibility		Х		Х	X
Flexible paddle deflection					
kVp accuracy and reproducibility		X			
HVL		Х			
Mammo unit assembly eval	Х				
Grid texture				Х	
Compression paddle border to chestwall alignment				X	
Volume coverage	i				Х

Test intervals – MEE and at least annually

Re	ediologic Technologist's QC section	Minimun		Section		
	Phantom IQ Test with MTD	Annually		Chapter 1 section 3 Phantom IQ Test on page 13	with MTD	
	CNR and MTF Measurement with MTD	Annually		Chapter 1 section 4 CNR and MTF Mea with MTD on page 15		
	Flat field 3D Test	Annually	/	Chapter		
	Phantom IQ 3D Test	Annually		5 additional only 1		
	Grid texture Test	Annualt				sicist are listed below.
	AOP 2D and SNR Check with MTD	Annualt		Specific to Digital Mammography	Minimum Frequency	Section
	AOP 3D Check	Annualt	8.	Compression paddle border to chest wall alignment with MTD	Annually	Job Card VF-DBTD1 - Compression paddle t MTD chest wall alignment test on page 39
			9.	Breast Entrance Exposure and Average Glandular Dose with MTD	Annually	Job Card VF-DBT02 - Breast Entrance Exposi and Average Glandular Dose with MTD on page 46
			10.	Breast Entrance Exposure and Average Glandular Dose in 3D mode	Annually	Job Card VF-DBT05 - 3D Breast Entrance Exposure and Average Glandular Dose on page 49
			11.	Artifact Evaluation and Flat field Uniformity with MTD	Annually	Job Card VF-DBT03 - Artifact Evaluation and F field Uniformity with MTD on page 55
			12.	Volume coverage	Annually	Job Card VF-DBT04 - Volume Coverage on page 59


SenoClaire tests ... same as Essential tests

Test	Esse	ntial	Seno	Claire (w/	MTD)
Test	noX	2D	noX	2D	3D
Flat-field		X			X
Phantom IQ		×		Х	Х
CNR & MTF		X		Х	
AOP Mode & SNR		X		Х	×
Artifact eval & flat-field unif		X		Х	
Collimation (2 alternatives)		×			
Sub-system MTF or Focal spot perf		Х			
Breast entrance exposure, AGD, reproducibility		X		Х	×
Flexible paddle deflection					
kVp accuracy and reproducibility		X			
HVL		X			
Mammo unit assembly eval	Х				
Grid texture				X	
Compression paddle border to chestwall alignment				Х	
Volume coverage					х

Compression paddle to MTD chest wall alignment test

 $\begin{array}{l} \textbf{Objective} \\ \textbf{Assure that the paddle chest wall side border aligns with the chest wall side of the} \\ \textbf{MTD} \end{array}$

Same test as "Compression Paddle Chest Wall Test" from the Collimation Assessment tests for Essential (541589-3-1EN)

SenoClaire tests ... new grid texture test

Test	Esse	ential	Seno	Claire (w/ I	MTD)
Tost	noX	2D	noX	2D	3D
Flat-field		Х			Х
Phantom IQ		Х		X	X
CNR & MTF		X		X	
AOP mode & SNR		Х		Х	Х
Artifact eval & flat-field unif		Х		Х	
Collimation (2 alternatives)		Х			
Sub-system MTF or Focal spot perf		Х			
Breast entrance exposure, AGD, reproducibility		Х		Х	X
Flexible paddle deflection	Х				
kVp accuracy and reproducibility		Х			
HVL		х			
Mammo unit assembly eval	Х				
Grid texture				Х	
Compression paddle border to chestwall alignment				Х	
Volume coverage AAPH 2016 12 Appunt 2016					X

SenoClaire tests ... 3D "extensions"

Test	Esse	ntial	Seno	Claire (w/	MTD)
Test	noX	2D	noX	2D	3D
Flat-field		Х			Х
Phantom IQ		Х		Х	Х
CNR & MTF		Х		Х	
AOP mode & SNR		Х		Х	Х
Artifact eval & flat-field unif		Х		Х	
Collimation (2 alternatives)		Х			
Sub-system MTF or Focal Spot Perf		Х			
Breast entrance exposure, AGD, reproducibility		Х		Х	Х
Flexible paddle deflection	Х				
kVp accuracy and reproducibility		Х			
HVL		Х			
Mammo unit assembly eval	Х				
Grid texture				Х	
Compression paddle border to chestwall alignment				Х	
Volume coverage					×

3D breast entrance exposure and AGD

Measure the typical entrance exposure in 3D mode on a "standard breast" (42-mm 50% fibroglandular); calculate the delivered AGD

Equipment requiredDosimeter & ACR mammography accreditation phantom

- 3D stationary* acquisition in manual mode
 acquisition technique as close as possible to technique clinically used on a "standard breast"
 Measured cumulated entrance exposure from the 9 projections to compute the AGD ...

Action Limit

The AGD for a "standard breast" must not exceed 3 mGy per 3D acquisition

Same procedure as for the 2D test ... but entrance dose measured over a sequence of 9 low-dose acquisitions

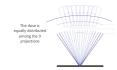
Dose in 3D - how can it be measured?

Relative Glandular Dose (RGD):

$$RGD(\alpha) = \frac{D_g N(\alpha)}{D_g N(0^\circ)}$$

Average Relative Glandular Dose (RGD):

$$D_g N_{TOMO} = D_g N_{MAMMO} \cdot \frac{1}{N_\alpha} \cdot \sum_{\alpha = \alpha_{min}}^{\alpha = \alpha_{max}} RGD(\alpha)$$


$$\overline{RGD} \cong 1$$
. $\Delta < 5\%$

 $\overline{\it RGD} \cong 1 \ , \ \ \Delta < 5\%$ Hence, mammography (0°) glandular dose values can be used to estimate tomosynthesis acquisition dose

Dose in 3D – why it can be measured in stationary mode on SenoClaire?

Thickness (cm)		Angle		RGD
THICKINGS (CITY)	0°	6.25*	12.5°	NOD
2	1.000	0.996	0.982	0.994
3	1.000	0.994	0.979	0.992
4	1.000	0.993	0.974	0.990
5	1.000	0.992	0.970	0.989
6	1.000	0.993	0.969	0.989
7	1.000	0.991	0.966	0.987
8	1.000	0.991	0.963	0.986
9	1.000	0.991	0.961	0.986

SenoClaire tests ... 3D specific test

Test	Esse	ntial	Seno	Claire (w/	MTD)
Tool	noX	2D	noX	2D	3D
Flat-field		х			X
Phantom IQ		Х		X	X
CNR & MTF		Х		Х	
AOP mode & SNR		Х		Х	X
Artifact eval & flat-field unif		Х		Х	
Collimation (2 alternatives)		Х			
Sub-system MTF or Focal spot perf		Х			
Breast entrance exposure, AGD, reproducibility		Х		Х	X
Flexible paddle deflection	Х				
kVp accuracy and reproducibility		х			
HVL		Х			
Mammo unit assembly eval	Х				
Grid texture	İ			Х	
Compression paddle border to chestwall alignment				X	
Volume coverage			<u> </u>		Х

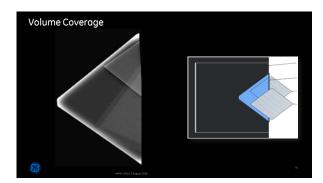
Volume coverage

Objective
Ensure that the entire imaged object is reconstructed on the Z-axis (perpendicular to the detector)

Equipment required Set of acrylic plates; 2 1-mm Al sheets

- Procedure

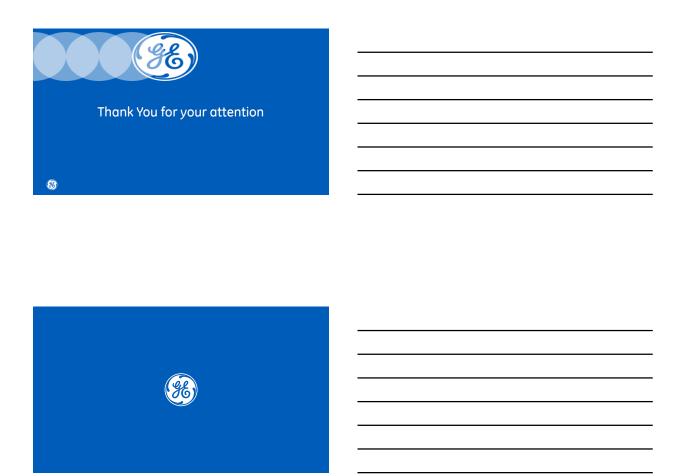
 "Sandwich" 25 mm of acrylic plates in between the 2 Al sheets as showed in the picture


 Manual 3D exposure, clinically used compression force

 Search for the focal planes for the 2 Al sheets

 Repeat with 60 mm acrylic

Action limit
The focal planes for the 2 Al planes must be in the reconstructed volume


With SenoClaire ... 9 additional tests for the technologist

Minimum frequency	Test
	Phantom IQ test with MTD
	CNR and MTF measurement with MTD
Weekly	Flat-field 3D test
	Phantom IQ 3D test
Monthly	Grid texture test
	AOP 2D and SNR check with MTD
	AOP 3D check
	Visual checklist
Semi-annually	Compression force
AAPH 2	016 2 August 2006

With SenoClaire ... 12 additional tests for the medical physicist

	Minimum frequency	Test			
		Phantom IQ test with MTD			
		CNR and MTF measurement with MTD			
		Flat-field 3D test			
	Annually / MEE	Phantom IQ 3D test			
		Grid texture test			
		AOP 2D and SNR check with MTD			
,		AOP 3D check			
		Compression paddle border to chest wall alignment with MTD			
		Breast entrance exposure and AGD with MTD			
		Breast entrance exposure and AGD in 3D mode			
		Artifact evaluation and flat-field uniformity with MTD			
		Volume coverage			
			70		

26

