GE Healthcare Integrating MR into Radiation Therapy

THE REAL PROPERTY OF

Dennis V Savitskij, Product Manager, MR in Radiation Oncology Aug 1st, 2016

83

McGeo PhD . M

Diagnostic MRI:

- •What is the problem?
- High conspicuity
- Dedicated/customized RF coils
- Multiple sequences:
- -Varying contrast
- -Functional information
- -Often qualitative
- 8

Radiation Planning MRI:

- •What is the spatial extent of the problem?
- •Where are the adjacent radiosensitive organs?
- High resolution 3D
- Image in treatment position
- Non ideal (surface coils)
- sequences

MR Advantages in Oncology

Excellent soft tissue contrast helps provide confidence in tumor delineation Multi-parametric imaging, anatomical, functional, metabolic, dynamic

Vascular imaging with and without contrast media

No ionizing radiation

Prostate, GYN, Brain/Head & Neck, Spine, Liver, Sarcoma and Breast

Outline

X

High Quality image generation RT Applications MRI patient positioning devices RT software

88

Spatial Accuracy

High Spatial Integrity

Mean abs error \leq 0.1cm at 43.0 cm diameter Max abs error \leq 1.6% at 43.0 cm diameter

- · High magnet homogeneity
- · Excellent gradient linearity over a LFOV
- 3D gradient distortion correction software reduces distortion in the MR image

Measurements based on NEMA MS-12 "Quantification and Mapping of Geometric Distortion for Special Applications", using a Large Field of View phantom with a 3D FGRE acquisition

Field of View for Radiation Treatment Planning

- Exceptional magnet homogeneity and Field of View
- •50x50x50 FOV
- 45cm DSV @<0.7ppm typical

Navigators... Motion Insensitive Body Imaging

SUSCEPTIBILITY WEIGHTED 3D IMAGING - SWAN
 SWAN is a multi-echo 3D T2* susceptibility weighted imaging technique SWAN for Prostate Brachytherapy Imaging Phase map allows visualization of diamagnetic and paramagnetic properties.

DISCO: 4D time resolved imaging

- High spatial and temporal resolution
 By treating DCE as a 4D data vs series of 3D sets
- Flexible matrix size & FOV
 By using Cartesian k-space sampling
- Maximizes contrast uptake
 By always sampling full central region
- Reduces blurring/motion artifacts
 By "random -iterative" subsample of outer k-space

	g w diferer Phases
Image contrast comes from k-space center	Edge definition is obtained from the edges of k-space
@ * "	
Capture contrast detail more frequently	update edge detail less frequently
666666	66660
Saranathan , J	Magn Reson Imaging. 2012 June ; 35(6): 1484–14

ARC=2x2 Acceleration DISCO Time Undersampling

Imaging Around Metal Implants - MAVRIC

Composite image created from spectral offset images
PD, STIR and T1 contrast is possible

Courtesy of M/Z, Fürth,

8

Voxels of the Right Size and Shape Pre-Loaded Radiation Oncology Protocols

High resolution

Thin-slice, zero skip

High contrast

8

Brain, Head & Neck, Pelvis

· Adult	Pediatric	Head	Cittar Lins By 1
	Nech.	Castron	
		223 Automotivata 223 Automotivata 223 Automotivata 223 Automotivata 223 Automotivata 223 Automotivata	
	V		
			Protocol Description

8

Anterior Array Supports

GEM posterior Array

For Head & Neck Treatments RT Open Head & Neck Suite

RT Open Array + 6 Channel Flex coil + Large Flex coil with coil supports

- · Excellent image quality
- · High resolution, full FOV images in the treatment position

For Brain Treatments 6 Channel Flex Coil + RT Open Array

High quality images in the treatment position. 10 channels of imaging.

8

T2 Cube

CIVCO Uni-frame and new coil support

Laser Marking

Laser bridge system specifically designed for radiation therapy laser marking in MR

8

MR Compatible Positioning Devices A Comprehensive Set of Options

8

MR pelvic Organ Segmentation Advantage Sim9

- · Semi-automatic segmentation
- Registered to CT
- · Designed to support:

Ħ

- Prostate Heads - Bladder - Rectum
- Femoral Designed to help speed up time consuming manual contouring of Organs-at-Risk on MR images¹
- Designed to improve consistency of inter-operator countouring²

Easy Integration into RTx Workflow

GE Oncology Workstation (AW) / MD Connect (AW Server)

Planning RT with MR images only Workflow Teres ! 205

Treatment Monitoring... OncoQuant

- OncoQuant AW application is designed to help organize and display multi-modality/ multi-time point oncology data to facilitate quick review. Highlights
 Automatic multi-modality image registration at loading for two or more exams.¹
 Adaptable workflow supports standard orherin such as RECIST² and VHO.³
 Dedicated automatic review procesols to identify and load like series.
 Single-click display up to four dates including Baseline, Nadir, Prior, and Current exams.

Integrated Registration Multi-Modality option required.
 2. RECIST <u>http://www.eont.ball</u>
 3. Measures of Response: RECIST, WHO, and New Alternatives, J Clin Oncol 24:3245-325

Case study by Dr. Boulay ASSESSING DRUG RESPONSE WITH MULTIPLE MODALITIES USING ONCOQUANT 8

Treatment Monitoring... OncoQuant

CT/MR/PET Autoregistration

Automatic Tumor segmentation Fx to Fx Statistics

Takeaways

- · GE has a solution for MR in RT
- · RT needs a definition of MR Sim analogous to AAPM TG 66
- · Have a great AAPM 2016
- · Visit the GE booth if you have any questions

