Therapy Symposium: You Too Can

Moderator: Jennifer Johnson

- An Overview of Incident Reporting
- Essential Elements of Incident Narratives
 Bruce Thomadsen

- Brett Miller

Standardizing Incident Reporting in the VA Medical System
 Jatinder Palta

- Board member of Center for Assessment of Radiological Sciences (CARS)
- Henry Ford is a member of RO-ILS
- Member the AAPM working group on RO-ILS

Outline

- Introduction A Culture of Patient Safety
- Incident Reporting
 _HFHS In-house
 - -Center for the Assessment of Radiological Sciences (CARS)
 - -Radiation Oncology Incident Reporting System (RO-ILS)
- Summary

AAPM * 3

Culture of Patient Safety:

What we need to do

Start at the top

AAPM

Work as a Team

SAAPM * 3

- Accountability not blame
- Policies and Procedures
- Measurement of Quality

Culture of Patient Safety

Start at the top

- Every process needs a leader who must lead by example
 Everyone, including the leader, must look at their work with a critical eye
- Work as a Team
- Accountability not blame
- Policies and Procedures
- Measurement of Quality

AAPM

Culture of Patient Safety

- · Start at the top
- · Work as a Team Therapist, Dosimetrist, Physicist, Physician, Nurse IT Professionals, Administrators
 Remove Hierarchy

 - Anyone on the team can prevent an error
 - Everyone member of the team needs to have the appropriate tools, training and time to do their job correctly
 Communication; Flow of Information
- Accountability not blame
- Policies and Procedures • Measurement of Quality

AAPM

Culture of Patient Safety

- Start at the top
- Work as a Team
- Accountability not blame
 - -Talk about errors as a learning experience
 - -Must be a non-punitive, nurturing environment
- Policies and Procedures
- Measurement of Quality

AAPM

Culture of Patient Safety

- · Start at the top
- Work as a Team
- Accountability not blame
- Policies and Procedures
 - -Clear, consistent and thorough

 - Willingness to delay a treatment if not safe
 Continually updated and modified with feedback from staff and monitoring of variance
- -Review of incidents when policies are not followed Measurement of Quality

AAPM

Culture of Patient Safety

- Start at the top
- Work as a Team
- Accountability not blame
- Policies and Procedures
- Measurement of Quality -Error Analysis and Variance Reporting -Key Quality Indicators, FMEA

AAPM

Incident Reporting

• Why?

- -Known knowns
- Output at the time of morning QA
- Results of patient specific quality assurance
- -Known unknowns
 - · Output at the time of treatment
 - Will the patient move during treatment

AAPM *

Unknown unknowns?

NYT articles

AAPM

- International publications
 - "Radiotherapy Risk Profile" by WHO - "Lessons Learned from Accidental Exposures in Radiotherapy" by IAEA
- Vendor Customer Technical Bulletins
- Incident Learning

AAPM

Incident Reporting Systems

- Henry Ford Cancer Institute In-house
- Center for the Assessment of Radiological Sciences (CARS)
- Radiation Oncology Incident Learning System (RO-ILS)

AAPM * 3

The Center for the Assessment of Radiological Sciences (CARS)

- CARS's incident reporting system was developed in spring 2012.
- CARS is a Patient Safety Organization listed with AHRQ.
- Went live for reporting September 2013, the first radiotherapy incident reporting system!
- Reporting software used in VA.

A A20M I

Advantages of the CARS Approach All incidents go into database – avoids some selection bias. All fields completed and correct – avoids data-entry fatigue (a very real problem) and omission of items not understood (some examples follow). Root-cause analysis done by professionals who understand both the analysis and radiotherapy – RCA has a long learning curve.

• We work with clients on process maps, FMEA and QM development.

Clients are supported

4

More about the CARS System Dissemination to Community System serves as the local database. • All data from a facility's reports searchable to CARS will be issuing: facility •Alerts for immediate hazards, • Only anonymized data searchable to others •Bulletins for important notices, • Anyone can view the anonymized data. •Periodic reports on findings, • For incidents with equipment, we contact •Through e-mail to clients, messages to list vendor for solutions. servers, letters to professional newsletters. • We also have an equipment reporting system A A25M * 3 A APPM

		7 (naryst s i onn	(1 1)	
	@ Patient Treatment Info	rmation		
	Disease being treated		The primery disease being treated.	
	Disease stage		The stage of the disease at the time of the incident,	
	Treatment Modality	(Photons 4)	The radiation therapy modality used or planned to be used at the time of the incident.	
	Incident type	Actual incident Good catch, no-one affected	Actual event or good calch.	
	Number of fractions delivered incorrectly	1	The number of radiation treatment fractions delivered incorrectly.	
	Intended treatment site	Abdomen ⊡Head and Neck Brain ⊕ Pelvis Breat □ TBI Extremty Thorax HBI □ Other	branded automical alte of tradment. For multiple altes indicate the most appropriate alte.	
	Treatment intent	Curative Unknown Pallative Not applicable	Immediate intent of radiation treatment.	
	Total prescribed dose	75 Gy	Total prescribed radiation dose for the full treatment being delivered at the time of the incident.	_
AAPM	Dose per fraction	2 Cy 1	Teach presidents A materials down per treatment the time of the	omadse

Report a Problem	n with a Radiotherapy Device		_	_	
		Submit report	Save as draft	Draft list	Cancel
Please fill in appropriate s	paces and check all items that apply to this	s incident. Fields mar	ked with * are mand	atory.	
☑ Report Details					
Date of report(mm/dd/yyyy)*			The date that the	report is logged.	
Date modified*	P		The date that the	report was last modifie	4.
Device type*	Treatment planning system		Choose the type of	f radiotherapy device	
Device Name	Varian Elekta Phillips Accuray Other		Choose the name	of the radiotherapy de	rice
Problem Classification*	 Physics modeling Dose calculation / accuracy Dose display 		Choose the proble	m classification	

Dev	ice Reporting 2
Description of the issuer	
Consequences of the issuer	f Bruce Thomadsen

A constrained on a cons

RO-ILS Status as of Feb 8, 2017 • Signed contracts: 122 practices representing 269* facilities • 29 pending representing 51 facilities • 3153* reports uploaded to national -Doubled since March, 2016 • 9 Quarterly Reports issued -Link on AAPM and ASTRO home page

	-	
Date	# Reports in System	Average submissions/mont
July, 2014	175	baseline
June, 2015	700	48
May, 2016	1775	90
December, 2016	2681	129

Examples from Quarterly Reports: CBCT Issues

CASE 1: INCORRECT VERTEBRAL BODY TREATED

CADE LINECOMPLET VEHT EBIAL BODY TREATED A patient was being treated with a fractionated does of 4.0 gray (Cy) for 5 fractions for the palliation of bone metastasis in the thoracic-lumbar (T-L) spine. The incorrect vertebral body was treated for 2 of the 5 fractions. Cone-beam computed tomography (CT) was used to perform the alignment. The automatic image alignment algorithm locked onto the incorrect vertebral body, thus resulting in a large shift of the patient. The incident was discovered on the third fraction when the treating radiation therapists noted the discrepancy.

Recommendations ...

- Policies and procedures should be clear regarding the actions to take when large shifts are
 indicated from image-guided radiation therapy (IGRT) imaging. In this case, the shift was 3 cm
 and was indicative of a problem. Some centers have adopted policies that require a secondary
 verification of patient setup when the shifts are larger than a specified amount.
- Use a cone-beam CT setting that captures a larger extent of anatomy where appropriate. This may aid in reducing confusion. One vendor supplies a "topogram" to specify the superior-inferior extent of the scan. Another vendor has predefined settings ranging up to 26 cm in this dimension.
- Other centers have begun using kilovoltage (kV) or megavoltage (MV) planar images to verify alignment in addition to cone-beam CT. These planar images can show a larger extent of anatomy and reduce the likelihood of aligning to a vorong vertebral body. .

Summary Summary CARS • RO-ILS - Individualized discussion, analysis and feedback from a - Backed by ASTRO and AAPM multidisciplinary panel of experts - Quarterly analysis and newsletter from a multidisciplinary - Access to all reports, anyone can view the anonymized panel of experts data - Newsletter available to everyone - Equipment Issue Reporting System - No cost for participation - Cost for participation AAPM 🐲 🗄 AAPM 🐲 🗟

AAPM 🐲 🗟

Thank You

- Special Thanks to:
 - Dr. Ben Movsas, Chairman, Department of Radiation Oncology, HFHS
 - Dr. Indrin Chetty, Physics Division Lead, HFHS
 - Dr. Bruce Thomadsen
 - Dr. Gary Ezzell

AAPM

Why Report Incidents?

- Unknown knowns bonus slide
 - Psychoanalytic philosopher <u>Slavoj Žižek</u> says that beyond these three categories there is a fourth, the unknown known, that which we intentionally refuse to acknowledge that we know.
- I haven't planned an HDR prostate in 1 years...
- My son knows he has homework but plays his video games.

AAPM 🐲 🗟