

Clifton (Dave) Fuller, MD, PhD Assistant Professor Head & Neck Section

Standardized Nomenclature from the MD perspective: Head and Neck Applications

Overview

- Moving to a standardized nomenclature takes a team effort.
- A physician perspective will be presented including foundational information on how targets, organs-atrisk, and margins are defined.
- An example will be presented for how to modify clinical practice to standardize nomenclature for treatment of head and neck.
- Problems which arose during the transition will be shared along with information about the type and amount of effort required during the transition

C.D. Fuller Acknowledgment/Disclosure

2016-17 Funders:

- The Andrew Sabin Family Fellowship Program, through an endowment established by the Andrew Sabin Family Foundation
- A direct gift from the Beach Family of Phoenix, AZ.
- National Science Foundation, Division of Mathematical Sciences, Quantitative Approaches to Biomedical Big Data (QuBBD)/Big Data to Knowledge (BD2K) Program (NSF1557559; CD Fuller/L Marai/G Canahuate/D Vock Co-PIs)
- National Cancer Institute Early Stage Development of Technologies in Biomedical Computing, Informatics, and Big Data Science (1 R01 CA214825-01; CD Fuller/L Marai/G Canahuate/D Vock Co-PIs)
- National Institute of Dental and Craniofacial Research (NR56/R01 DE025248-01; SY Lai, PI)
- National Cancer Institute Grant MD Anderson Head and Neck Specialized Programs of Research Excellence (SPORE) Development Award (P50CA097007-10, J Myers, PI)
- National Cancer Institute Paul Calabresi Clinical Oncology Award (5K12CA088084, R Bast, PI)
- National Institutes of Health/National Cancer Institute Grant (R03 CA188162-01A1; KA Hutcheson, PI)
- Elekta AB/MD Anderson MRI-LinAc Consortium Seed Grant
- Elekta AB Travel support
- 2011-2015
- GE Health Technologies/MD Anderson Center for Advanced Biomedical Imaging In-Kind Award
- MD Anderson Center for Radiation Oncology Research Seed Grant
- MD Anderson Institutional Research Grant
- Hope Foundation/Southwest Oncology Group
- ASCO Young Investigator Award

Radiation Oncology Head and Neck Section

David Rosenthal, MD Professor/Section Chief

Steven Frank, MD Assoc. Professor

Adam Garden, MD Professor

Brandon Gunn, MD Assoc. Professor

Bill Morrison, MD Professor

Jack Phan, MD, PhD Asst. Professor

Heath Skinner, MD, PhD Asst. Professor

Dave Fuller, MD, PhD Asst. Professor

NERGY IN SCIENCE

MDACC Head and Neck Team

Head and Neck Surgery

Thoracic/Head and Neck Medical Oncology

Neuroradiology

Radiation Oncology/Medical Physics

Pathology

Oncologic Dentistry

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Institutional/Departmental Team

Steve Hahn, MD Department Chair

Tom Buchholz. MD Physician-in-Chief. Fmr. Dept. Chair David Rosenthal, Joe Herman, MD Head & Neck Section Chief

Institutional/Departmental/Section/Residency Leadership

Leterecia Smith Education Program Corrdinator

Victoria Cox Program Coordinator

Cathy Ramirez Prog Mgr,

Marianne Sam Prog Mgr, Research

RN.

Nurse

Chris Wogan Prog Mgr, Publications

Robert C. Bast.

MD

K12 Paul Calabresi

Program Director

Amy Spelman Protocol Research Administrative Director

Sunil Krishnan,

MD

Ctr. For Radiation

Oncology Research

Director

Kellev Tealer Grant Program Manager

Scarlene Wilson Grant Program Coordinator

Administrative Director

Research/Grant Team

Emily Norboge

Prog Mgr,

Research

Research

THE UNIVERSITY OF TEXAS **MDAnderson** Cancer Center

Clinic Team

Leah Theriot PA. MLP

Brenda Lanier Senior Administrative Assistant

Admin

Bruce Minsky, MD Deputy Division Chair

MD, MSc Clinical Research Director

Supporting Program/Center Leadership

Steven Frank,

MD

Advanced

Technology/ Proton

Director

John Hazle.

PhD

Ctr. For Adv.

Biomed. Imaging

Director

Pam Jones Research Development Director

2014 Statistical and Applied Mathematical Sciences Institute (SAMSI) Innovation Lab

"Interdisciplinary Approaches to Biomedical Data Science Challenges" Team

Liz Marai PhD Computer Science U. Illinois-Chicago

David Vock PhD Biostatistics U. Minnesota

Guadalupe Canahuate PhD Computer Science U. Iowa

Dave Fuller MD, PhD Radiation Oncology UT MD Anderson

-2016 Joint NIH/NSF Division of Mathematical Sciences Initiative on Quantitative Approaches to Biomedical Big Data (QuBBD) Grant, "Spatial-nonspatial Multidimensional Adaptive Radiotherapy Treatment" (NSF 1557679)
- 2017-2020 Early Stage Development of Technologies in Biomedical Computing, Informatics, and Big Data Science Grant, "SMART-ACT: Spatial Methodologic Approaches for Risk Assessment and Therapeutic Adaptation in Cancer Treatment" (R01 CA214825-01)

MD Anderson Multi-disciplinary Symptom Working Group

PhD

•National Institute of Dental and Craniofacial Research (NR56/R01 DE025248-01; SY Lai, PI)

•National Cancer Institute Grant MD Anderson Head and Neck Specialized Programs of Research Excellence (SPORE) Development Award (P50CA097007-10, J Myers, PI)

•National Institutes of Health/National Cancer Institute Grant (R03 CA188162-01A1; KA Hutcheson, PI)

Stephen Lai MD, PhD Head and Neck Surgery

bdallah Mohamed Jihong Wang MD, MSc PhD Radiation Oncology Radiation Oncology

PhD

Radiation Oncology

Dave Fuller MD, PhD Radiation Oncology

Personal Mentor Team

T. Scott

Perkins.

PhD

L. Ray

Whiteside.

PhD

Richardson.

PhD

PhD

Rasch.

MD, PhD

Martin Tony Y. Fullerton. Fuss, Eng,

MD,PhD

MD

Richard Gregory Crownover, Swanson, PhD. MD MD

Soterios Stathakis Papanikolaou. PhD

Niko

PhD

Thomas Edward Jackson. Guerrero, MD, PhD

PhD

1937-2013 Pre-medical, medical, graduate, residency, thesis committee, and post-doctoral mentors

MD

David H.

Hussey,

MD

Keeton.

PhD

David Rosenthal. MD

John Hazle. Dean Sittig, PhD PhD

Reeves,

PhD

Steven J. Frank MD

Jayashree Adam Garden, Kalpathy-Cramer PhD

Current scientific and clinical mentorship team

David I. Rosenthal, MD

Charles R. Thomas, Jr., MD

Long-term career mentors (15+ years)

Staff & post-docs

Mona Kamal Hesham Jomaa, El Halawani MD, PhD MD, PhD MDACC MDACC

Radwan Mohammad,

MD, MSc.

MDACC

Yao Ding,

PhD

MDACC

Manee-Naad Kocak-Uzel Ruangskul, MD, PhD MD, Mahidol University, MDACC Sisli Eftal Univ., Thailand Turkey

MD Chulabhorn Hosp.. MDACC Thailand

Medical and Graduate Student Trainees

Trainee Team **Resident Physicians**

MD. MPH Case Western MDACC

MD, PhD

MDACC

Tommy Sheu Aaron Grossberg Brandon Dyer Jolien Heukelom MD MD UC Davis NKI-AVL

Sweet Ping MD MDACC

Ben Aasheesh Warren Kanwar UTH Texas Tech

Timothy

Dale

BCM

-2016

2015

Rosalind UTH Franklin U

Brian

Pham

Blaine

Smith

St. Thomas U.

Chloe French UTH

(Univ of Utah)

Tulane

(UCLA)

Oxford

Perag

Sevak

MD

UTMB

Sara Henley, MD UTH (UWV)

Weygand

Cleveland Clinic Univ. of Utah

Brandi Temple, MD Tulane

Cooksey Aymar ACU ACU

Kathryn Bowman Preston Williams ACU MDACC

2012-2014 Conner Patrick

ACU

(TTUHSC)

UTexas

Charles Colton Baron McCoy

Sarah Floris ACU Wesleyan (Jefferson)

Carthal Anderson UTexas

Shaiken Horiates Yale Whitman

Shauna Campbell DO

Hansen

Crosby White

UTH

Zafereo Rock

Texas Tech

MDACC

Sahnoune

UTH

Cardenas Ger MDACC

The Home Team

Lack of standardization: An unmet need

Standardizing Naming Conventions in Radiation Oncology

Lakshmi Santanam, Ph.D.,* Coen Hurkmans, Ph.D.,[†] Sasa Mutic, Ph.D.,* Corine van Vliet-Vroegindeweij, Ph.D.,[‡] Scott Brame, Ph.D.,* William Straube, M.S.,* James Galvin, D.Sc.,[‡] Prabhakar Tripuraneni, M.D.,[§] Jeff Michalski, M.D.,* and Walter Bosch, D.Sc.*^{,¶}

Int J Radiation Oncol Biol Phys, Vol. 83, No. 4, pp. 1344-1349, 2012

Several recent reports document the deleterious effects that inaccurate, incomplete communication can have in RO. An article published by the Pennsylvania Patient Safety Advisory in September 2009 found that 46% (17/37) of reported errors involved treatment to an incorrect site and 21% (8/37) to the wrong dosage (3). A similar error and near-miss reporting and learning system was implemented by Washington University (4). On the basis of the data collected from April 2008 to February 2010, 500 events due to miscommunication of intent were reported based on the treatment planning and simulation orders request. Of these 17% (84) were due to wrong contours or modifying or renaming (5). Although these events reported at Washington University did not result in patient mistreatments, each represents a process inefficiency that adds no value to the Conceptual underpinnings for technical Head & Neck clinical QA efforts: QA is an information process

- All "error" is spatial (i.e. dose is or isn't where it "should be").
- In aggregate error (e.g. failure or toxicity) is an estimatable uncertainty with potentially knowable distributional probability
 - We can thus estimate, with enough priors, global or component uncertainty
- Spatial uncertainty is propagated through the treatment chain
 - Thus, primacy of inputs (i.e. target delineation, OAR nomenclature)
- Reducing systematic uncertainties decreases error proportionally greater than chasing random uncertainties
 - Thus systematic proactive efforts are more effective than serial reactive interventions

Serial links in treatment information chain

Position: Medical physicists and radiation oncologists are obligate biomedical informaticists

Kagadis et al.: Medical physicists and health care applications of informatics

PRINCIPLES OF Biomedical Informatics

SECOND EDITION

IRA J. KALET

Ira Kalet, PhD

Remembering Ira Kalet, 1944-2015

Retired CSE adjunct professor Ira Kalet passed away last night after a long battle with cancer.

Ira joined the University of Washington in 1978 in the then newly formed Department of Radiation Oncology. Subsequently he held adjunct appointments in Computer Science & Engineering, Bioengineering, and Biological Structure, and a joint appointment in Medical Education (now the Department of Biomedical Informatics and Medical Education).

SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology Indrin J. Chetty, PhD,* Mary K. Martel, PhD,[†] David A. Jaffray, PhD,[‡]

- Integrating radiation oncology databases across the discipline will facilitate science and elevate the quality of care (45). The creation of a Virtual Clinical Trials Group that enables federated databases at different institutions for conducting cooperative research is a consideration. Sharing practices and outcomes will permit high mean and tight variance in clinical practice and will improve quality (46).
- 2. Tools need to be created and made available for patients and physicians to discuss treatment options, as recommended by the Patient-Centered Outcome Research Institution. Such an approach will drive the development of metatreatment planning systems, in which one prescribes an outcome, not a treatment (eg specification of a 95% local control rate at 5 years with 5% grade 3 or more dyspnea) (6, 47). This could also be expanded beyond radiation oncology.
- 3. Expertise in the informatics domain among radiation oncology professionals needs to be developed (6). The most suitable candidates with the appropriate skill sets and multidisciplinary knowledge to succeed in this space are likely medical physicists or physicians with strong

computational backgrounds. Training grants for developing programs for oncology informatics will provide these individuals with the knowledge needed to support informatics research initiatives.

4. Informatics tools need to be developed to support the monitoring of the quality of oncology care at the point(s) of delivery (48). Real world—based evidence approaches are emerging in other domains and will also benefit the field of radiation oncology. The often-quoted statements that 5% differences in dose result in significant changes in tumor control and normal tissue complication probabilities will be reinforced or challenged through collecting and sharing data from the entire clinical process.

The problem

Without common terminology, content is obscured...and we may not be aware of it!

Personal story

ICRU 29-62 Moving from RT to IMRT to IGRT

James A. Purdy

Figure 1. (A) Schematic illustration of the boundaries of the volumes defined by ICRU Report 29: target volume, treatment volume, and irradiated volume; (B) boundaries of the volumes defined by ICRU Report 50, GTV, CTV, PTV, treated volume, and irradiated volume; and (C) boundaries of the volumes defined by ICRU Report 62: GTV, CTV, internal target volume (ITC), PTV, treated volume, and irradiated volume.

28

Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT)

In IMRT, organs or structures that are not delineated can receive significant radiation absorbed doses. Contouring organs at risk (OAR) is the first step to control the dose in normal tissues, which might cause unacceptable complications. For so-called "parallel-like organs," the whole organ should be entirely delineated. For so-called "seriallike organs," those parts of the organ that could receive a high dose should be delineated in a consistent way. For tubular types of organ (e.g., the rectum), delineation of the wall is preferred to whole-organ delineation. Especially for a serial-like organ, a planning organ at risk volume (PRV) should be delineated around the OAR. Tissues not included in the CTV or not delineated as doselimiting OARs should still be specifically delineated and named the remaining volume at risk (RVR).

ICRU 83 specifies uncertainty margination, but does not guide regarding naming conventions nor not specify the rules for naming structures in treatment planning systems

Journal of the ICRU Vol 10 No 1 (2010) Report 83

Head and neck: A non-target rich environment

Conventional Nasopharynx

1990

How have we been addressing morbidity?

Xerostomia

- Dysphagia
- Swallowing dysfunction
- Odynophagia
- Anosmia
- Cranial neuropathy
- Motor/sensory function
- Memory loss
- Aphasia
- Vascular Sequelae

Benefit of IMRT: Parotid sparing

But IMRT does not remove dose to OARs, it just moves it around...

Fig. 1. Comparison of nontarget beam paths in intensity-modulated radiotherapy (top) vs. conventional three-dimensional technique (bottom).

IMRT toxicity profile

IMRT non-target beam path toxicity
 D. I. ROSENTHAL et al.

Fig. 3. (a) Anterior oral mucositis during intensity-modulated radiotherapy (IMRT). (b) Occipital scalp epilation after IMRT. (c) Scalp hair subsequent regrowth, same patient.

Structure	Conventional	IMRT	
Brain stem	3741.6	4590.4	
Cochlea, left	426.4	3467.1	
Cochlea, right	433.5	3372.3	
Lower lip	226.7	3587.1	
Mandible, anterior	752.4	3871.1	
Mandible, middle	1124.3	4954.3	
Mandible, posterior	4886.1	6149.3	
Maxilla, anterior	264.7	3070.8	
Maxilla, posterior	2894.0	4206.8	
Middle ear, left	574.6	3557.3	
Middle ear, right	642.3	3584.4	
Occipital scalp	118.6	3453.6	

Table 6. Average of maximum voxel dose (in cGy) to noncontoured structures per patient, by treatment technique

Abbreviation: IMRT = intensity-modulated radiation therapy.

Table 4. Percentages of patients experiencing nausea and vomiting in the IMRT or IMRT-plus-concurrent-cisplatin groups

	Toxicity grade				
	0	1	2	3	4
Nausea*					
IMRT alone	24	33	38	5	0
Concurrent cisplatin	2	22	58	18	0
Vomiting**					
IMRT alone	63	16	18	3	0
Concurrent cisplatin	32	18	38	12	0

Abbreviation: IMRT = intensity-modulated radiation therapy. * p < 0.004 based on Pearson Chi-Square test. ** p < 0.04 based on Pearson Chi-Square test.

EFFECT OF BRAIN STEM AND DORSAL VAGUS COMPLEX DOSIMETRY ON NAUSEA AND VOMITING IN HEAD AND NECK INTENSITY-MODULATED RADIATION THERAPY

Fig. 2. Dorsal vagal complex, area postrema and brainstem delineation on CT.

Treatment type	
IMRT alone	49
Concurrent cisplatin	25
Other concurrent chemo	26

Structure	Parameter $p =$		Sig
 Results of logistic regrest distribution. 	ssion evaluation of	maximum toxi	city
Brainstem	Maximum 0.07		n.s.
	Mean	0.02	n.s.
	Median	0.02	n.s.
	EUD	0.5	n.s.
Dorsal vagal complex	Maximum	0.1	n.s.
	Mean	0.05	n.s.
	Median	0.06	n.s.
	EUD	0.3	n.s.
Area postrema	Maximum	0.08	n.s.
	Mean	0.3	n.s.
	Median	0.1	n.s.
	EUD	0.6	n.s.
b. Results of analysis of bin 3 CTC-AE scores).	ary logistic regressi	on (Grade 3 vs.	< Grade
Brainstem	Maximum	0.07	n.s.
	Mean	0.0006	*
	Median	0.004	n.s.
	EUD	0.3	n.s.
Dorsal vagal complex	Maximum	0.02	n.s.
	Mean	0.007	n.s.
	Median	0.009	n.s.
	EUD	0.4	n.s.
Area postrema	Maximum	0.01	n.s.
-	Mean	0.001	*
	Median	0.01	n.s.
	EUD	0.7	n.s.

Beam path toxicity in candidate organs-at-risk: Assessment of radiation emetogenesis for patients receiving head and neck intensity modulated radiotherapy

Esengul Kocak-Uzel^{a,c}, G. Brandon Gunn^a, Rivka R. Colen^b, Micheal E. Kantor^a, Abdallah S.R. Mohamed^{a,d}, Sara Schoultz-Henley^e, Paniyotis Mavroidis^f, Steven J. Frank^{a,j}, Adam S. Garden^a, Beth M. Beadle^a, William H. Morrison^a, Jack Phan^a, David I. Rosenthal^a, Clifton D. Fuller^{a,j,*}

E. Kocak-Uzel et al. / Radiotherapy and Oncology xxx (2014) xxx-xxx

Fig. 1. Sagittal, coronal, axial view of the CNV-ROIs: DVC (Dorsal vagal complex), AP (Area postrema), NA (Nucleus ambiguus) SN (Solitary Nucleus), BS (Brainstem), FV (Forth Ventricle), NF (Nasopharyngeal mucosa), Cerebellum, Mucosa (Oropharyngeal mucosa), Pons (Pons), WB (Whole brain).

3

Bigger numbers= more powerful stats= Better patient care

Table 2

Four RPA-derived candidate OAR-dose-thresholds for univariate and multivariate assessment using comparison of *p*-values.

Source	MV	UV
DVC median ≥ 26.9%	0.054121932	0.0014*
BS mean ≥ 36 Gy	0.08	0.0022*
TV 40 > 80%	0.548212802	0.3504
Mucosa V70 > 0	0.081683735	0.0055*
AP V24 ≥ 76%	0.021464091*	0.0001*
WB V16 > 5%	0.044658738	0.0001*
SN V20 > 99%	0.417539352	0.0001*

Significant p-value.

Aspiration Pneumonia After Concurrent Chemoradiotherapy for Head and Neck Cancer

Beibei Xu, PhD¹; Isabel J. Boero, BS²; Lindsay Hwang, BS²; Quynh-Thu Le, MD³; Vitali Moiseenko, PhD²; Parag R. Sanghvi, MD²; Ezra E. W. Cohen, MD⁴; Loren K. Mell, MD²; and James D. Murphy, MD, MS²

Prevention and Treatment of Dysphagia and Aspiration After Chemoradiation for Head and Neck Cancer

David I. Rosenthal, Jan S. Lewin, and Avraham Eisbruch

Table 2. Chemoradiation Trials: Therapeutic and Functional Outcomes				
Trial	Radiation Therapy	Chemotherapy	Mucositis Grade 3 + 4	Swallowing Toxicity
RTOG 99-14 ⁹⁴	72 Gy over 6 weeks; single arm; phase II	Cisplatin	67%	FT rate, 82.9%; 1 year, 40.9%; 2 years, 21.8%
Starr ⁹⁵	69.9 Gy over 38 days	Fluorouracil + carboplatin	68% v 52%; P = .01	2-year FT rates, 51% v 25%; P = .02
RTOG 91-11 ⁶	70 Gy over 7 weeks	Cisplatin	43% v 24%	1 year, softs or liquids only, 23% v9%; 1 year, FT, 3% v none; 2 years, 14%-16% of both groups had "difficulty swallowing"
Intergroup 01265	70 Gy over 7 weeks	Cisplatin	43% v32%; P = .08	52% v 40%; P = .08; acute FT ratios
Abitbol ¹⁵	74.4 Gy over 16 weeks	Cisplatin; fluorouracil + mitomycin-C	65%	5%, pharynx soft tissue necrosis; 6%, aspiration pneumonia chronic; 18% FT dependent chronic; 7%, liquids only
Eisbruch ⁶⁰	70 Gy; single arm; phase l	Gemcitabine	Grade 3 or higher for all	Acute FT rate, 82% all, 92% > 10 mg/m ² ; chronic FT rate, 28% (associated with pharyngeal ulceration, aspiration, and obstruction not relieved by dilation
GORTEC 94-0196	70 Gy over 7 weeks	Carboplatin + fluorouracil	Grade 3/4; 71% v 39%	FT rates overall, 37% v .15%; P = .02; 15%; > 10% weight loss, 14% v 6%; P = .04
Kies ⁹⁷	75 Gy over 9 weeks; single arm; phase I	Paclitaxel; carboplatin; fluorouracil		1-year FT rate, 20%
*Abbreviations: RTOG, Radiation Therapy Oncology Group; GORTEC, Groupe Oncologie Radiothérapie Tête Et Cou; FT, feeding tube.				

VOLUME 24 · NUMBER 17 · JUNE 10 2006

JOURNAL OF CLINICAL ONCOLOGY

Candidate predictors of post-IMRT swallowing dysfunction • D. L. SCHWARTZ et al.

Where to spare?

Fig. 1. Swallowing structures: superior pharyngeal constrictor muscle (cyan blue), middle pharyngeal constrictor muscle (red), inferior pharyngeal constrictor muscle (green), upper esophageal sphincter (yellow), esophagus (dark blue), base of tongue (white), supraglottic larynx (orange), and glottic larynx (magenta).

Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 2, pp. 385–392, 2009 Copyright © 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/\$-see front matter

doi:10.1016/j.ijrobp.2008.11.041

CLINICAL INVESTIGATION

Head and Neck

DYSPHAGIA AFTER CHEMORADIOTHERAPY FOR HEAD-AND-NECK SQUAMOUS CELL CARCINOMA: DOSE-EFFECT RELATIONSHIPS FOR THE SWALLOWING STRUCTURES

Piet Dirix, M.D.,* Sarah Abbeel, M.D.,* Bianca Vanstraelen,* Robert Hermans, M.D. PH.D.,[†] and Sandra Nuyts, M.D. PH.D.*

Departments of *Radiation Oncology, and [†]Radiology, Leuvens Kankerinstituut, University Hospitals Leuven, campus Gasthuisberg, Leuven, Belgium

390

I. J. Radiation Oncology

Biology

Physics Volume

Volume 75, Number 2, 2009

			Dosimetric parameter							
First author (Ref.)	No.	Site	Mean PC	Mean larynx	Mean ES	V50 PC	V60 PC	V50 larynx	V60 larynx	Endpoint
Feng (18)	36	OP/NP	0.008	0.032	NS	0.008	0.006	0.016	NS	VF
Levendag (19)	56	OP	0.02	_	NS	_	_	_	_	HNSW
Jensen (20)	25	HP/OP/NP	NS	0.048	NS	NS	NS	NS	0.035	HNSW
Caglar (21)	96	All	0.007	0.003	NS	0.05	NS	0.04	NS	VF
Present study	53	All	0.02	0.04	NS	0.04	NS	0.08	NS	HNSW

Table 8. Overview of the literature

Abbreviations: ES = esophagus; HNSW = QLQ-H&N35 swallowing symptom score; HP = hypopharynx; No. = number of patients included in the analysis; NP = nasopharynx; OP = oropharynx; PC = pharyngeal constrictor muscles; VF = videofluoroscopy.

Fig. 1. Final model with probability on grade 2–4 RTOG swallowing dysfunction at 6 months as a function of the total risk score. The observed NTCP values all fall within the 95% confidence interval.

Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 52–59, 2011 Copyright © 2011 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/\$-see front matter

doi:10.1016/j.ijrobp.2009.10.057

CLINICAL INVESTIGATION

Head and Neck

WEEKLY DOSE-VOLUME PARAMETERS OF MUCOSA AND CONSTRICTOR MUSCLES PREDICT THE USE OF PERCUTANEOUS ENDOSCOPIC GASTROSTOMY DURING EXCLUSIVE INTENSITY-MODULATED RADIOTHERAPY FOR OROPHARYNGEAL CANCER

GIUSEPPE SANGUINETI, M.D.,*[†] G. BRANDON GUNN, M.D.,* BRENT C. PARKER, PH.D.,* EUGENE J. ENDRES, C.M.D.,* JING ZENG, M.D.,[†] AND CLAUDIO FIORINO, PH.D.[‡]

*Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX; [†]Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD; and [‡]Department of Medical Physics, San Raffaele Scientific Institute, Milano, Italy

Dosimetric predictors of PEG tube placement • G. SANGUINETI et al.

Variable	Structure	OR	95% CI	р
Dmean (cGy) Dmeanw (cGy) V9.5 Gy/week (cm ³) V10 Gy/week (cm ³) Dmeanw (cGy) Dmeanw (cGy) Dmeanw (cGy)	Oral mucosa Oral mucosa Oral mucosa Oral mucosa Larynx Superior constrictor Middle constrictor Inferior constrictor	1.0016 1.0073 1.029 1.024 1.0033 1.0061 1.0072 1.0051	1.0003–1.029 1.0022–1.0124 1.010–1.049 1.008–1.041 0.9997–1.0070 1.0018–1.0104 1.0023–1.0121 1.0071–1.0095	0.015 0.005 0.003 0.003 0.07 0.005 0.004 0.02
Fractionation (no- HYPER vs HYPER)		0.17	0.05-0.63	0.008

Table 3. Summary of results of univariate logistic analysis (p values < 0.20)*

Abbreviations as in Table 2.

* Endpoint: risk of \geq 3-month percutaneous endoscopic gastrostomy dependence.

Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy *

MD Anderson Head and Neck Cancer Symptom Working Group (

Recursive partitioning analysis								Confirmatory univariate nominal logistic regression				
Muscle OAR	V-level	Percent- threshold (%)	ROC AUC cohort (test)	ROC AUC holdback (verification)	LogWorth	p-Value	SS	Odds ratio (95% CI)	Relative risk (95% CI)	BIC	ΔBIC	Evidence grade §
ADM	60	79	0.68	0.60	5.95	<.0001		2.88 (1.32-6.12)	2.48 (1.32-4.65)	216.55	12.21	Very strong
BM	35	65.8	0.65	0.57	1.09	0.0815	n.s.	-				
CPM	45	0.35	0.64	0.51	1.00	0.0998	n.s.	-				
GGM	35	98.9	0.70	0.55	2.74	0.0018		3.65 (1.69-8.54)	3.17 (1.53-6.57)	212.08	7.73	Strong
IPC	70	98.2	0.60	0.51	1.08	0.0831	n.s.					
ITM	47	99.9	0.67	0.44	2.83	0.0015		2.66 (1.13-5.90)	2.30 (1.18-4.48)	218.48	14.14	Very strong
LPM	66	13.1	0.53	0.35	1.07	0.0860	n.s.	-				
LRX	63	1	0.61	0.47	0.89	0.1274	n.s.	-				
MHM	69	17.5	0.74	0.64	6.77	<.0001		4.54 (2.14–10.33)	3.81 (1.89-7.67)	204.34	0.00	BIC _{minimum} (reference)
MM	66	4.4	0.61	0.53	0.88	0.1314	n.s.	-				
MPC	49	99.9	0.63	0.54	0.17	0.6825	n.s.	-				
MPM	70	1	0.59	0.45	3.31	0.0005		2.64 (1.27-5.72)	2.37 (1.22-4.60)	216.60	12.25	Very strong
PDM	69	13.5	0.60	0.48	0.15	0.7070	n.s.	-				
PGM	65	68.9	0.62	0.49	0.24	0.5732	n.s.	-				
SPC	70	6.35	0.68	0.47	5.09	<.0001		10.60 (3.12-45.16)	9.00 (2.20-36.83)	205.14	0.80	Weak

Statistically significant at P < 0.05.

Statistically significant after Bonferroni correction.

Muscle OAR ADM BM CPM 1.00 Wilcoxon p= 0.0500 0.80 0.0335 0.0170 0.60 0.0005 0.0004 0.0002 0.40 <.0001 0.20 0.00 GGM IPC ITM 1.00 0.80 0.60 0.40 0.20 0.00 LPM MHM MM 1.00 08.0 Lactional volume 04.0 Lactional volume 0.20 0.00 MPC PDM MPM 1.00 0.80 0.60 0.40 0.20 0.00 SPC PGM 1.00 Chronic-RAD —No 0.80 0.60 -Yes Each error bar is constructed using a 0.40 95% confidence interval of the mean. 0.20 0.00 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Dose bin (Gy)

Reality: Everything matters!!

But need way to link dose to ROI and clinical outcomes in large datasets

Fig. 4. Chronic RAD as a function MHM V69 by Age. Composite plot of MHM V69 (as a continuous variable) and age cohort (green shading denotes the observed whole population; red identifies patients over 62 years of age; blue indicates patients less than 62 years old). Smoothed fits are shown with color-specific ellipses covering 05% of observed values for each cohort as a visual uncertainty actimator.

MDACC is big...

- 8 Head and neck only Rad oncs
- Treat ~1,000 cases annually
- 6 distinct platforms used for portions of segmentation/optimization tasks (Monaco, Brain lab, Pinnacle, Eclipse, 2 internal custom platforms for MC)
- 4 additional software platforms used for dose calculation/DVH analysis (Velocity, MimVista, Slicer3D, CERR)
- But we couldn't effectively aggregate data from DVHs!!

For head and neck and enormous amount of structures are being optimized/evaluated

- 2003-2011
 - Internal complexity check showed an average of 3 target volumes per MDACC head and neck patient (stable)...
 - *Average* number of OARs constrained for IMRT optimization increased from 3 >> 9 per patient; as many as 25+ ROIs for complex sinonasal cases
 - Routinely used include:
 - Cord
 - Parotids (L/R)
 - Brainstem
 - Cochleas (L/R)
 - Brain
 - Larynx
 - Mandible
 - Submandibular glands (L/R)

2014 internal survey

- Electronic data capture of 512 IMRT head and neck cases (bulk pull from DVH archives)
- Showed 78 identifiable TVs/OARs (concatenating intermediary "ring" or "sub" structures
- Counted "name variants"
 - E.g. "tongue, oral tongue, tng", all counted as variants of "Tongue".
- Laterality ignored

Example: Parotid Glands

- 192 "nominal variants"
 - Most common ("R_Parotid") was used 68% of the time
 - Multiple structures on several patients ("R_parotid_sub")
 - Unclear which was optimized
 - Unclear if manually or autosegmented

The Post-Hoc Nomenclature Solution: Fellows!

Esengul Manee-Naad Kocak-Uzel Ruangskul, MD, MD Sisli Eftal Univ., Mahidol University, Turkey Thailand

Jared Sturgeon MD, PhD MDACC Sasikarn Chamchod MD Chulabhorn Hosp.. Thailand

ICRU 50/62-based TV contouring

- **GTV** Gross disease
- CTV1 Gross disease + 8mm 1cm margin
- CTV2 "High Risk" nodal volumes and mucosal sites
 - A somewhat ambiguous volume that means different things to different individuals.
 - Optional volume in many RTOG protocols
 - i.e. uninvolved level II nodes in base of tongue cancer.
 - the right base of tongue in a left cancer of the glossopharyngeal sulcus
- CTV3 Uninvolved nodal regions at risk for microscopic disease extension

Example case from 2013

-	Regions Of Interest											
File	e Edit Op	itions	Statistics						8 %	O_{k}	Add Edit Insert Remove Flove Scale	
	Visualizat	ion	Pa	rameters		Statistics) (D	ensity			
	Name	2D Mode		3D Mode		Color		Number of Contours	Box Size		Line Width	
P	<u>,</u> CTV 52	Contour		ΟΠ		yellow -		63	Iviedium		Medium	
0	L Parotid	Off		Off	-	orange		25	Medium		Medium	
0	Ř Parotid	Off		Off		skyblue		25	Medium		Medium -	
0	Šubmandibular g	Off		Off		lavender 🛛		17	Medium		Medium —	
0	Submandibular g	Off	-	Off		orange =		16	Medium		Medium =	
0	Cochlea Lt	Off	-	Off		forest =		3	Medium		Medium =	
0	Cochlea Rt Conti	Off	-	Off		slateblue		3	Medium		Medium =	
0	Larynx	Off	-	Off		lightblue =		11	Medium		Medium -	
0	Brainstem	Off	-	Off		lightorange		24	Medium		Medium =	
0	Spinal cord	Off	-	Off		red =		86	Medium		Medium =	
0	Globe L	Off	-	Off		khaki 🛛		9	Medium		Medium =	
0	Globe Rt	Off	-	Off	-	aquamarine		10	Medium		Medium =	
0	Lens Rt	Off	-	Off		teal		4	Medium	-	Medium -	

The Core Process begins...

FIGURE 3. DATA STANDARDS/DICTIONARY DEVELOPMENT STEPS **IDENTIFY DATA** ELEMENTS FROM DECISION CRITERIA CREATE DATABASE OF ALL REASONABLE ELEMENT WORDINGS AND DEFINITIONS CONSENSUS-DERIVED STANDARDIZED DATA ELEMENTS AND DEFINITIONS DATA DICTIONARY (PUBLIC); DATABASE CONSTRUCTOR (PROPRIETARY) CONTINUOUS REVIEWAND REVISION

K. Hammermeister, MD (http://www.uni-mainz.de/FB/Medizin/Kardiologie/incis/Data/p4_1.htm)

٠

Enter RTOG/ATC/TG-263

Uniform Tissue Names for Use in RTOG Advanced Technology Clinical Trials

Walter R. Bosch, D.Sc.

Consistent naming of contoured structures used in radiotherapy treatment planning is essential to facilitate the comparison of dose-volume statistics across patients for quality assurance and outcomes analysis. Maintaining consistency in structure names is particularly important (and challenging) in multi-institutional clinical trials, in which treatment planning data are collected from many participating institutions. Differences in treatment planning techniques and local languages are among the factors that contribute to variations in the names used to identify structures.

The Image Guided Therapy QA Center (ITC) has developed a Digital Data Integrity QA process to examine submitted RT treatment planning data for completeness and consistency. This process involves resolving discrepancies between submitted and protocol-specified structure names. For some data sets, the mapping between submitted and protocol-specified structure names is obvious, and the process of assigning standard names using ITC tools is straightforward. Other cases, however, require visual inspection of images and contours to identify structures. For trials involving disease sites with many organs at risk, e.g., H/N IMRT, the effort required to correctly identify all structures can be substantial.

http://atc.wustl.edu/resources/RTOG-ATIC/ATIC-ATC_Uniform_Tissue_Names.pdf

Uniform Tissue Names for Use in RTOG Advanced Technology Clinical Trials Walter R. Bosch, D.Sc.

- A. Organs at Risk
 - 1. A list of base names for organs at risk is given in **Table 1**, This list is not exhaustive. It is expected that it will be extended in a consistent manner as new protocols are written.
 - For paired organs, right or left organs are identified by appending "_R" or "_L" to the base name. E.g., LUNG_L
 - 3. For geometric extensions of organs (PRVs) with uniform margin, a suffix of "_PRVm" is appended to the base name, where m is an integer indicating the size of the margin in mm, e.g., SPINAL_CORD_PRV5. Non-uniform PRVs are identified using the suffix "_PRV", i.e, without margin size.

Structure Name	Paired?
ANAL_CANAL	
BLADDER	
BRAC_PLX	_L/_R
BRAIN	
BRAINSTEM	
BREAST	_L/_R
BRONC_TREE	_L/_R
CARINA	
CAUDA_EQUINA	
CEREBELLUM	_L/_R
CEREBRUM	_L/_R
CHIASM	
CN_VII	_L/_R
CN_VIII	_L/_R
COCHLEA	_L/_R
CORNEA	_L/_R
DUODENUM	
EAR_MID	_L/_R
EAR_EXT	_L/_R
ESOPHAGUS	
FEMUR	_L/_R
GLOBE	_L/_R
GLOTTIS	
GREAT_VESS	
HEART	

Structure Name	Paired?
MAIN_BRONC	_L/_R
OPTIC_NRV	_L/_R
ORAL_CAVITY	
OVARY	_L/_R
PAROTID	_L/_R
PENILE_BULB	
PERINEUM	
PHARYNX	
PITUITARY	
PROSTATE	
RECTUM	
RETINA	_L/_R
RIB	
SACRUM	
SEM_VES	
SKIN	
SM_BOWEL	
SPINAL_CORD	
STOMACH	
SUBMND_SALV	_L / _R
TEMP_LOBE	_L / _R
TESTIS	_L / _R
THYROID	
TM_JOINT	_L/_R
TONGUE	

So....

Standardizing Naming Conventions in Radiation Oncology

Lakshmi Santanam, Ph.D.,* Coen Hurkmans, Ph.D.,[†] Sasa Mutic, Ph.D.,* Corine van Vliet-Vroegindeweij, Ph.D.,[‡] Scott Brame, Ph.D.,* William Straube, M.S.,* James Galvin, D.Sc.,[‡] Prabhakar Tripuraneni, M.D.,[§] Jeff Michalski, M.D.,* and Walter Bosch, D.Sc.*^{,¶} Int J Radiation Oncol Biol Phys, Vol. 83, No. 4, pp. 1344–1349, 2012

Table 2 Planning organs at risk volumes						
Organ at risk name	Left/right	Margin (mm)	Proposed name			
SpinalCord	N/A	Nonuniform	SpinalCord_PRV			
SpinalCord PRV	N/A	5	SpinalCord _05			
Parotid	Left	0	Parotid_L			
Parotid	Right	0	Parotid_R			
Total parotid	Left+Right	0	Parotids			
Kidney	Left	10	Kidney_L_10			

Solution: TG-263

Charge Facilitate improvements in clinical trials and outcome studies by standardizing

- Structure names across imaging and treatment planning system platforms. Nomenclature will be defined, at minimum, for all anatomic structures identified as by the group as relevant to radiation oncology. The nomenclature schema should be expandable as other structures are identified in future as relevant.
- Nomenclature for elements of the dose volume histogram curve and related data.
- Developing templates for clinical trial groups and users of specific software platforms.

Let's start by trying to fix the standardization problems for DVH data

TG 263 - Standardizing Nomenclature for Radiation Therapy

- group of 57 stake holders
- domestic and international groups
- representing a broad range of perspectives

ASTRO 2016 ENHANCING ALUE

Roles	Professional Societies	Clinic Types	Specialty Groups
Physician	ASTRO	Academic	IHE-RO
Physicist	AAPM	Community	Dicom Working Group
Vendor	ESTRO	Large Practice	NRG
Dosimetry		Small Practice	IROC

IMPROVING OUTCOMES

Slide courtesy of Chuck Mayo (U. Mich.)

Development Process

Task Group findings are in parent committee review process

- Guidelines
 - Target Structures
 - Standardized rule based approach (10)
 - Addresses primary issues and expandable
 - Non-Target Structures
 - Rule based approach (15) with a few concessions
 - Specific listing of 736 defined structures

IMPROVING OUTCOMES

DVH Nomenclature

ASTRO 2016 ENHANCING ALUE

Slide courtesy of Chuck Mayo (U. Mich.)

So, we implemented the new system

- V1.0
 - A designated "faculty champion" encouraged MDs to use the new nomenclature.
 - Result: Benign neglect
 - 🔅

Insight: MDs hate to type

- V2.0
 - Script populated a standardized ROI list in random colors, in alphabetical order
 - Result: ~60% compliance
 - :|

2016 V3.0

Insight: MDs like their "system"

• V3.0

- 🙂

- Script populated a standardized ROI list in standard colors, in order of use (GTV, CTV, commonly used OARs)
- Result: >85% compliance

		Visualizati
		Name
	0	SpinalCord
	0	SpinalCord_PRV
	0	BrainStem
	0	BrainStem_PRVs
	0	Parotid_L
	0	fsParotid_L_Sub
	0	Parotid_R
	0	fsParotid_R_Sub
ł	0	Cochlea_R
	0	Cochlea_L
	0	Esophagus

) Longov

What made it work?

- Ease of use
 - MDs were saved effort by ROI auto-population
- Familiarity
 - Standardized color/polygon modes made direct interaction easier after
 - Intuitive ordering

Base of Tongue isodose display

Personalized radiotherapy: concepts, biomarkers and trial design

^{1,2}A H REE, MD, PhD and ¹K R REDALEN, PhD

Integration of imaging information in designing treatments

Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2012.194

Figure 1. Possible evolution in knowledge representation, seen from the perspective of computer science, under a qualitative point of view.
SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology Indrin J. Chetty, PhD,* Mary K. Martel, PhD,[†] David A. Jaffray, PhD,[‡]

- Integrating radiation oncology databases across the discipline will facilitate science and elevate the quality of care (45). The creation of a Virtual Clinical Trials Group that enables federated databases at different institutions for conducting cooperative research is a consideration. Sharing practices and outcomes will permit high mean and tight variance in clinical practice and will improve quality (46).
- 2. Tools need to be created and made available for patients and physicians to discuss treatment options, as recommended by the Patient-Centered Outcome Research Institution. Such an approach will drive the development of metatreatment planning systems, in which one prescribes an outcome, not a treatment (eg specification of a 95% local control rate at 5 years with 5% grade 3 or more dyspnea) (6, 47). This could also be expanded beyond radiation oncology.
- 3. Expertise in the informatics domain among radiation oncology professionals needs to be developed (6). The most suitable candidates with the appropriate skill sets and multidisciplinary knowledge to succeed in this space are likely medical physicists or physicians with strong

computational backgrounds. Training grants for developing programs for oncology informatics will provide these individuals with the knowledge needed to support informatics research initiatives.

4. Informatics tools need to be developed to support the monitoring of the quality of oncology care at the point(s) of delivery (48). Real world—based evidence approaches are emerging in other domains and will also benefit the field of radiation oncology. The often-quoted statements that 5% differences in dose result in significant changes in tumor control and normal tissue complication probabilities will be reinforced or challenged through collecting and sharing data from the entire clinical process.

"Where standards exist...use them!"

FIGURE 5. Validation for format, fields, and values against standards: a simple configuration for standards designers.

Informatics in Clinical Research in Oncology Current State, Challenges, and a Future Perspective

Amar P.S. Chahal, MBBS, FRCS, MBA

DICOM-RT and Its Utilization in Radiation Therapy¹

Maria Y.Y. Law, PhD • Brent Liu, PhD

Figure 3. Chart illustrates radiation therapy work flow. Yellow boxes indicate the DICOM-RT objects that could be generated within the work flow. A radiation therapy treatment plan (step 2) with radiation dose distribution involves the superposition of the radiation therapy objects RT Plan, RT Structure Set, and RT Dose on the corresponding set of DICOM computed tomographic (CT) scans according to the coordinates in the DICOM-RT standard. Because the work flow is for external beam therapy, the RT Brach Treatment Record information object is not shown. DRR = digitally reconstructed radiograph, DVH = dose-volume histogram.

TABLE 5.3 Base Names for Organs at Risk				
Structure Name	cture Name Paired? Structure Name		Paired?	
ANAL_CANAL		MAIN_BRONC		
BLADDER		OPTIC_NRV	_L/_R	
BRAC_PLX	_L/_R	ORAL_CAVITY		
BRAIN		OVARY	_L/_R	
BRAINSTEM		PAROTID	_L/_R	
BREAST	_L/_R	PENILE_BULB		
BRONC_TREE		PERINEUM		
CARINA		PHARYNX		
CAUDA_ EQUINA		PITUITARY		
CEREBELLUM	_L/_R	PROSTATE		
CEREBRUM	_L/_R	RECTUM		
CHIASM		RETINA	_L/_R	
CN_VII	_L/_R	RIB		
CN_VIII	_L/_R	SACRUM		
COCHLEA	_L/_R	SEM_VES		
CORNEA	_L/_R	SKIN		
DUODENUM		SM_BOWEL		
EAR_MID	_L/_R	SPINAL_CORD		
EAR_EXT	_L/_R	STOMACH		
ESOPHAGUS		SUBMND_SALV	_L/_R	
FEMUR	_L/_R	TEMP_LOBE	_L/_R	
GLOBE	_L/_R	TESTIS _L		
GLOTTIS		THYROID		
GREAT_VESS		TM_JOINT	_L/_R	
HEART		TONGUE		
KIDNEY	_L/_R	TRACHEA		
LG_BOWEL		URETHRA		
LARYNX		VULVA		
LAC_GL	_L/_R			
LENS	_L/_R			
LIPS				
LIVER				
LUNG				
MANDIBLE				

We're just now agreeing on the ontology of structure names!!!

Source: From Bosch, W. R., Uniform Tissue Names for Use in RTOG Advanced Technology Clinical Trials, August 19, 2009. Available at http://atc. wustl.edu. Accessed 1 December 2009.

Note: Where paired organs are indicated, laterality is indicated by appending "_L" or "_R" to the base name. Geometric extensions of these structures are indicated by appending "_PRVm," where *m* is the nominal margin (mm) used to extend the structure.

Patient Reported Outcomes (PROs) in Clinical Trials: Is 'In-Trial' Guidance Lacking? A Systematic Review

Derek G. Kyte¹*, Heather Draper², Jonathan Ives², Clive Liles³, Adrian Gheorghe¹, Melanie Calvert^{1,4}

Imaging Informatics: Challenges in Multi-site Imaging Trials

Steve Langer¹ and Brian Bartholmai¹

Table 1

Radiotherapy research data types within their common IT systems.

Information type	Data examples	IT system
Baseline clinical data	Demographics (including co-morbidity and family history), TNM-stage, date of diagnosis, histopathology	HIS, TDS
Diagnostic imaging data	Diagnostic CT, MR and PET imaging	PACS
Radiotherapy treatment planning data	Delineation/structure sets, planning-CT, dose matrix, beam set-up, prescribed dose and fractions	PACS, RIS
Radiotherapy treatment delivery data	Cone beam CTs, orthogonal EPID imaging, delivered fractions	PACS, RIS
Non-radiotherapy treatment data	Surgery, chemotherapy	HIS, TDS
Outcome data	Survival, local control, distant failure, toxicity (including patient reported outcomes), quality of life	EDC, TDS
Follow-up imaging data	Follow-up CT, MR and PET imaging	PACS
Biological data	Sample storage, shipping, tracing and lab results	LIMS
Additional study conduct data	Study design, protocol, eligibility criteria	EDC, CTMS

Data collection

Benefits of a clinical data warehouse with data mining tools to collect data for a radiotherapy trial

Erik Roelofs ^{a,*,1}, Lucas Persoon ^{a,1}, Sebastiaan Nijsten ^a, Wolfgang Wiessler ^b, André Dekker ^{a,1}, Philippe Lambin ^{a,1}

^a Department of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre (MUMC+), The Netherlands; ^b Siemens Healthcare, Malvern, PA, USA

Fig. 1. Schematic overview of the CAT data warehouse/research portal. The system synchronizes data from clinical data sources and custom services. It is also capable of collecting data for trials and data collected for other research purposes. For data export, several modules exist in the system and are easily accessible by web-technology (i.e. the patient browser, query builder and an electronic case report form XML export).

© 2012 Ted Goff

"Here's a list of 100,000 warehouses full of data. I'd like you to condense them down to one meaningful warehouse." -

Table 1

Parameters collected for the NSCLC and rectal cancer groups. The last columns show which data were looked up where and from which source the data were recalculated.

Parameter	NSCLC	Rectum	Source		Action
			Manual	Automatic	
Gender	\checkmark	\checkmark	Chart	EMR	Looked up
WHO score	\checkmark	\checkmark	Chart	EMR	
TNM staging	\checkmark	\checkmark	Chart	EMR	
Chemo therapy	\checkmark	\checkmark	Chart	EMR	
Number of positive lymph nodes	\checkmark	\checkmark	Chart	EMR	
Tumour PA	\checkmark	\checkmark	Chart	EMR	
pCR		\checkmark	Chart	EMR	
Survival	\checkmark	\checkmark	Chart	EMR	
Total delivered dose	\checkmark	\checkmark	R&V	R&V	
Overall treatment time	\checkmark	\checkmark	R&V	R&V	
GTV volume	\checkmark	\checkmark	XiO	PACS	Recalculated
V ₅	Lungs ^a	•	XiO	PACS	
V ₂₀	Lungs		XiO	PACS	
V ₄₀	-	Bladder	XiO	PACS	
MLD	√ ^b		XiO	PACS	
SUV Max	•	Tumour	TrueD	PACS	
SUV Mean		Tumour	TrueD	PACS	

^a V_5 and V_{20} data for the lungs were calculated with both lungs minus the PTV. ^b MLD data for the lungs were calculated with both lungs minus the GTV.

Innovative technology requires innovative data structures

Digression: We need more radiation oncologists and informatics folks working with medical physicists!

- Growth of information has led to creation of a new medical subspecialty board certification...
- But few rad oncs.
- Most informaticists are EHR-oriented (AMIA)...
- And those that know DICOM are typically PACS-oriented (SIIM).

Next step: from Ontology to Mereology

A formal theory for spatial representation and reasoning in biomedical ontologies

Maureen Donnelly^{a,*}, Thomas Bittner^{a,b}, Cornelius Rosse^c

Figure 1 Basic spatial inclusion theory (BIT) relations.

Artificial Intelligence in Medicine (2006) 36, 1-27

What if the TPS already incorporated spatial classifiers for OARs (or TVs) based on TG-263?

Figure 3 Potential for reasoning about parthood and containment in the FMA.

Figure 5 Reasoning about containment and subclass relations in GALEN.

Artificial Intelligence in Medicine (2006) 36, 1-27

"Where standards exist...use them!"

FIGURE 5. Validation for format, fields, and values against standards: a simple configuration for standards designers.

Informatics in Clinical Research in Oncology Current State, Challenges, and a Future Perspective

Amar P.S. Chahal, MBBS, FRCS, MBA

Better prediction models?

Figure 4. Web-based Therapy Explorer: Patient prognosis for a white female subject with T3 stage supraglottic cancer. The mosaic (top left) shows the T3 female subgroup has particularly low mean survival rates, close to those of the more severe T4 category. The Kaplan Meier chart (top middle) also predicts similar trajectories for T3 and T4 categories; the ribbon bands are std deviations. The star panel (top right) shows the patient along with the 5 most similar patients in the cohort repository; the varying color of the glyphs, from blue to orange, captures a notable variation of therapy outcomes. The interactive nomogram view (bottom) shows that despite the variation in the treatment course for two similar patients, the survival outcomes (rightmost axis) are very similar and fairly low. The four encodings are linked through interaction; 4 filters are currently applied along the first nomogram axes.

Spatial data?

Figure 2. Topological map (blue) defined over lymph node regions, overlaid with a dual graph representation (red) of the map.

Figure 3. Lymph node distributions of 11 patients, ranked by their similarity to Patient #6. Patient #6 (shown top left) has two nodes affected along a chain, in regions 2 and 3, left side. The most similar case in this set has one more node along the same chain; the next 4 most similar cases have one node affected in region 2; the next two have combinations of node 2 with a node along another chain; while the 3 least similar ones have no nodes affected. This automated similarity technique detects seamlessly symmetric cases: in the top row, the last 4 cases have the one-node pattern bilaterally, on the right, on the left, and respectively on the left.

Example: FMA

The Foundational Model of Anatomy ontology contains approximately 75,000 classes and over 120,000 terms; over 2.1 million relationship instances from over 168 relationship types link the FMA's classes into a coherent symbolic model. The FMA is one of the largest computer-based knowledge sources in the biomedical sciences.

Content-specific auditing of a large scale anatomy ontology

Ira J. Kalet^{a,b,c,d,*}, Jose L.V. Mejino^d, Vania Wang^c, Mark Whipple^e, James F. Brinkley^{b,d,c}

Fig. 2. A diagram showing some of the lymphatic chains and nodes in the head and neck region, illustrating the "efferent to" and "afferent to" relations. In this diagram, node A is efferent to node D, and is afferent to nodes B and C. The arrows just show the direction of flow of lymphatic fluid.

Table 1

Contents of "efferent to" slots of some lymphatic chains and lymphatic vessels.

Chain or vessel name	Contents of "efferent to" slot
Pulmonary lymphatic chain	Bronchopulmonary lymphatic chain
Subdivision of pulmonary lymphatic chain	NIL
Axillary lymphatic chain	Subclavian lymphatic trunk Subclavian lymphatic tree
Subdivision of axillary lymphatic tree	NIL
Posterior mediastinal lymphatic chain	Thoracic duct
	Tracheobronchial lymphatic chain
Tracheobronchial lymphatic chain	Bronchomediastinal lymphatic trunk
	Bronchomediastinal lymphatic tree
Tributary of tracheobronchial lymphatic chain	NIL
Left cardiac tributary of tracheobronchial lymphatic chain	NIL
Brachiocephalic lymphatic chain	Bronchomediastinal lymphatic trunk
	Bronchomediastinal lymphatic
Right cardiac tributary of brachiocephalic lymphatic chain	NIL
Lymphatic capillary	NIL
Tributary of lymphatic trunk	NIL
Superficial lymphatic vessel	NIL
Deep lymphatic vessel	NIL
Lymphatic trunk	NIL

http://si.washington.edu/projects/fma

I.J. Kalet et al./Journal of Biomedical Informatics 42 (2009) 540-549

Anatomical Information in Radiation Treatment Planning

Ira J. Kalet, Ph.D., Jonn Wu, M.D., Matthew Lease, and Mary M. Austin-Seymour, M.D. Radiation Oncology Department, University of Washington, Seattle, WA

James F. Brinkley, M.D., Ph.D. and Cornelius Rosse, M.D., D.Sc. Department of Biological Structure., University of Washington, Seattle, WA

Proc AMIA Symp

Figure 1: The Prism anatomy drawing panel showing a thorax cross section. Larger structures are easy to discern, but important smaller structures such as blood vessels, nerves and lymph nodes are impossible to see in these images.

The future: Centralized & automated segmentation/prescription

Int J CARS (2016) 11:43-51

Fig. 7 Brainstem segmentation example. *Green* represents manual contouring, while *red bold* is the segmentation provided by the proposed approach

Table 5	Table that summarizes			
results of	f previous works which			
attempted to segment the				
brainster	n on MRI images			

References	Method	DSCp	VD(%)	Segmentation time
Babalola et al. [4]	Atlas-based	0.94	3.98	120–180 min (set of brain structures)
	Statistical-based (PAM)	0.88	6.80	$1 \min + 20 \min^a$
	Statistical-based (BAM)	0.89	7.80	$5\min + 3\min^a$
	Expectation-minimization	0.83	21.10	30 min (set of brain structures)
Bondiau et al. [5]	Atlas-based	-	-13.11	20 min (seven OARs and seven normal structures)
Isambert et al. [6]	Atlas-based	0.85	-14.8	7-8 min (six OARs)
Proposed approach	SVM	0.90	3.99	36.6 s

DSC and pVD are given as mean values

^a These two approaches required registration steps which took 20 min in the first case and around 3 min for the second method

50

Figure 5: Overview of candidate data streams for potential incorporation into precision medicine models for decision improvement tools.

Predicting the future is not easy...

Western Electric is crossing a telephone with a TV set.

Thank You!!

- Questions?
- Please email me: cdfuller@mdanderson.org

