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Overview

* Moving to a standardized nomenclature takes a team
effort.

* A physician perspective will be presented including
foundational information on how targets, organs-at-
risk, and margins are defined.

* An example will be presented for how to modify
clinical practice to standardize nomenclature for
treatment of head and neck.

* Problems which arose during the transition will be
shared along with information about the type and
amount of effort required during the transition
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Lack of standardization: An unmet need

Standardizing Naming Conventions in Radiation Oncology

Lakshmi Santanam, Ph.D.,* Coen Hurkmans, Ph.D.," Sasa Mutic, Ph.D.,*
Corine van Vliet-Vroegindeweij, Ph.D.," Scott Brame, Ph.D.,* William Straube, M.S.,*
James Galvin, D.Sc.,’ Prabhakar Tripuraneni, M.D.,° Jeff Michalski, M.D.,*

and Walter Bosch, D.Sc.*"
[nt J Radiation Oncol Biol Phys, Vol. 83, No. 4, pp. 13441349, 2012

Several recent reports document the deleterious effects that
Inaccurate, incomplete communication can have in RO. An article
published by the Pennsylvania Patient Safety Advisory 1n
September 2009 found that 46% (17/37) of reported errors
mvolved treatment to an mncorrect site and 21% (8/37) to the
wrong dosage (3). A similar error and near-miss reporting and
learning system was implemented by Washington University (4).
On the basis of the data collected from Aprnl 2008 to February
2010, 500 events due to miscommunication of intent were
reported based on the treatment planning and simulation orders
request. Of these 17% (84) were due to wrong contours or
modifying or renaming (5). Although these events reported at
Washington University did not result in patient mistreatments,
each represents a process inethciency that adds no value to the

— ™ %



Conceptual underpinnings for technical Head & Neck
clinical QA efforts:

e All “error” is spatial gi.e. dose is or isn’t
where it “should be”).

* In aggregate error (e.g. failure or toxicity) is
an estimatable uncertainty with potentially
knowable distributional probability

* We can thus estimate, with enough priors,
global or component uncertainty
e Spatial uncertainty is propagated through
the treatment chain
* Thus, primacy of inputs (i.e. tar%et

delineation, OAR nomenclature

* Reducing systematic uncertainties
decreases error proportionally greater than
chasing random uncertainties

* Thus systematic proactive efforts are more
effective than serial reactive interventions



Position:

Medical physicists and radiation oncologists
are obligate biomedical informaticists
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Kagadis et al.: Medical physicists and health care applications of informatics



Biomedical informatics (BMI)
Basic research education and research

O

Methods, techniques,
theories

Health informatics

V Bioinformatics and (HI): clinical
Applied structural (Imaging) informatics and
resaarih informatics public health

ani ; informatics
practice Informatics in translational science:

translational bioinformatics (TBI) and clinical
research informatics (CRI)

{(_Wholacalies, call, tissaes, organs ;< Patients, individusls. populations  societies




PRINCIPLES OF
BIOMEDICAL
INFORMATICS ,

SECOND EDITION Remembering Ira Kalet, 1944-2015

Retired CSE adjunct professor Ira Kalet passed
IRA J. KALET away last night after a long battle with cancer.

Ira joined the University of Washington in 1878 in

the then newly formed Department of Radiation

Oncology. Subsequently he held adjunct

I K I t P h D appointments in Computer Science & Engineering,
ra a e ) Bioengineering, and Biological Structure, and a join

appointment in Medical Education (now the

Department of Biomedical Informatics and Medical
Education).



SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology
Indrin J. Chetty, PhD,* Mary K. Martel, PhD,” David A. Jaffray, PhD,*

I. Integrating radiation oncology databases across the computational backgrounds. Training grants for devel-

discipline will facilitate science and elevate the quality of
care (45). The creation of a Virtual Clinical Trnals Group
that cnables federated databases at different mstitutions
for conducting cooperative research is a consideration.
Shanng practices and outcomes will permit high mean
and tight vanance in clinical practice and will improve
guality (46],

2. Tools need to be created and made available for patients

and physicians to discuss treatment options, as recom-
mended by the Patient-Centered Outcome Research
Institution. Such an approach will drive the development
of metatreatment planning systems, in which one pre-
scribes an outcome, not a treatment {eg specification of a
95% local control rate at 5 years with 5% grade 3 or
more dyspnea) (6, 47} This could also be expanded
beyond radiztion oncology.

. Expertise in the informatics domain among radiation
oncology professionals needs to be developed (6). The
most suitable candidates with the appropriate skill sets
and multidisciplinary knowledge to succeed in this space
are likely medical physicists or physicians with strong

oping programs for oncology informatics will provide
these individuals with the knowledge needed to support
informatics research imbiatives.

. Informatics tools need to be developed to support the

monitoring of the guality of oncology care at the point(s)
of delivery (48). Real world—based evidence approaches
are emerging in other domains and will also benefit the
field of radiation oncology. The often-quoted statements
that 5% differences in dose result in significant changes
in tumor control and normal tissue complication proba-
bilities will be reinforced or challenged through col-
lecting and sharing data from the entire clinical process.



What we SaY to dogs
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e Without common
terminology,
content is
obscured...and

we may not be whot they hear
aware of it!
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ICRU 29-62

Moving from RT to IMRT to IGRT

James A. Purdy
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Figure 1. (A) Schematic illus-
tration of the boundaries of the
volumes defined by ICRU Re-
port 29: target volume, treat-
ment volume, and irradiated
volume; (B) boundaries of the
volumes defined by ICRU Re-
port 50, GTV, CTV, PTV,
treated volume, and irradiated
volume; and (C) boundaries of
the volumes defined by ICRU
Report 62: GTV, CTV, inter-
nal target volume (ITC), PTV,
treated volume, and irradiated
volume.



Prescribing, Recording, and Reporting Photon-Beam
Intensity-Modulated Radiation Therapy (IMRT)

In IMRT, organs or structures that are not deli-
neated can receive significant radiation absorbed
doses. Contouring organs at risk (OAR) is the first
step to control the dose in normal tissues, which
might cause unacceptable complications. For
so-called “parallel-like organs,” the whole organ
should be entirely delineated. For so-called “serial-
like organs,” those parts of the organ that could
receive a high dose should be delineated in a con-
sistent way. For tubular types of organ (e.g., the
rectum), delineation of the wall i1s preferred to
whole-organ delineation. Especially for a serial-like
organ, a planning organ at risk volume (PRV)
should be delineated around the OAR. Tissues not
included in the CTV or not delineated as dose-
Iimiting OARSs should still be specifically delineated
and named the remaining volume at risk (RVR).

ICRU 83 specifies uncertainty margination, but does not guide regarding naming conventions
nor not specify the rules for naming structures in treatment planning systems

Journal of the ICRU Vol 10 No 1 (2010) Report 83



Head and neck:
A non-target rich environment

pal mucosa and
constrictors

=

\
o
—
k = [SOr




Conventional Nasopharynx
2000




How have we been addressing

morbidity?

« Xerostomia

« Dysphagia

« Swallowing dysfunction
« Odynophagia
 Anosmia

« Cranial neuropathy

* Motor/sensory function
« Memory loss

« Aphasia

e Vascular Sequelae
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Benefit of IMRT: Parotid sparing

2000 2010




But IMRT does not remove dose to OARS,
It jJust moves It around...

[. J. Radiation Oncology @ Biology @ Physics Volume 72, Number 3, 2008
Fie Options Global 20 Help

Fig. 1. Comparison of nontarget beam paths in intensity-modulated radiotherapy (top) vs. conventional three-dimensional
technique (bottom).

[MET non-target beam path toxicity @ D L Bosesthal ef al.



IMRT toxicity profile

IMRT non-target beam path toxicity @ D. . ROSENTHAL er al.

Fig. 3. (a) Anterior oral mucesitis during intensity-modulated radiotherapy (IMRT). (b) Occipital scalp epilation after
IMRT. (c) Scalp hair subsequent regrowth, same patient.

[MRET non-target beam path toxicity @ D, [ BosestHaL ef al.



Table 6. Average of maximum voxel dose (in cGy) 1o
noncontoured structures per patient, by treatment technigue

Siruciure Conventional IMRT
Brain stem F741.6 4594
Cochlea, left 4264 3467.1
Cochlea, right 4331.5 33723
Lower lip 2267 35k7.1
Mandible, anterior T32.4 38711
Mandible, middle 1124.3 49543
Mandible, postenior JEEG. 1 614493
Maxilla, anterior 2647 3070.8
Maxilla, posterior 28040 F206.8
Middle ear, lefi 3746 35573
Middle ear, right fhd2.3 35kR4.4
Occipital scalp 118.6 3453.6

Abbreviation! IMRET = intensity-modulated radiation therapy.

[MRET non-target beam path toxicity @ D, [ BosestHaL ef al.



Table 4. Percentages of patients experiencing nausea and
vomiting in the IMRT or IMRT-plus-concurrent-cisplatin

ZToups
Toxicity grade
0 1 2 3 4

Nausea®

IMRT alone 24 33 3% 5 0

Concurrent cisplatin 2 22 58 18 0
Vomiting **

IMRT alone 63 16 18 3 0

Concurrent cisplatin 32 18 38 12 0

Abbreviation: IMRT = intensity-modulated radiation therapy.

* p < 0.004 based on Pearson Chi-Square test.
** p < (.04 based on Pearson Chi-Square test.



EFFECT OF BRAIN STEM AND DORSAL VAGUS COMPLEX
DOSIMETRY ON NAUSEA AND VOMITING IN HEAD AND NECK

INTENSITY-MODULATED RADIATION THERAPY
doi:10.1016/j.medds.2009.11.002

Dorzal Vagal Conplex ~ Brainsten

Postrema
Table 5. Logistic regression

Structure Parameter p= Sig.

a. Results of logistic regression evaluation of maximum toxicity

distribution.
Brainstem Maximum 0.07 1.5,
Mean 0.02 1.5,
Median 0.02 1.5,
EUD 0.5 1.5,
Dorsal vagal complex Maximum 0.1 f.5.
Mean 0.05 1.5,
Median 0.06 1.5,
EUD 0.3 1.5,
) ) L Area postrema Maximum 0.08 f1.5.
Fig. 2. Dorsal vagal complex, area postrema and brainstem delineation on CT. Mean 0.3 s
Median 0.1 f1.5.
EUD 0.6 f1.5.

b. Results of analysis of binary logistic regression (Grade 3 vs. << Grade
3 CTC-AE scores).

- - - Brainstem Maximum 0.07 f1.5.
Treatment type Mean 0.0006 *
IMRT alone 49 Median 0.004 ..
Concurrent cisplatin 25 EUD 0.3 f.s.
Other concurrent chemo 76 Dorsal vagal complex Maximum 0.02 f1.5.
: : - Mean 0.007 f1.5.
Median 0.009 1.5,
EUD 0.4 1.5,
Area postrema Maximum 0.01 [L.5.
Mean 0.001 *
Median 0.01 1.5,

EUD 0.7 f1.5.




Beam path toxicity in candidate organs-at-risk: Assessment of radiation
emetogenesis for patients receiving head and neck intensity modulated
radiotherapy

Esengul Kocak-Uzel “, G. Brandon Gunn*, Rivka R. Colen ® Micheal E. Kantor?,

Abdallah S.R. Mohamed *¢, Sara Schoultz-Henley ¢, Paniyotis Mavroidis , Steven J. Frank *,
Adam S. Garden , Beth M. Beadle “, William H. Morrison, Jack Phan ¢, David 1. Rosenthal ¢,

Clifton D. Fuller *

E. Kocak-Uzel et al./Radiotherapy and Oncology xxx (2014) xxX—xxX 3

Fig. 1. Sagittal, coronal, axial view of the CNV-ROIs: DVC (Dorsal vagal complex), AP (Area postrema), NA (Nucleus ambiguus) SN (Solitary Nucleus), BS (Brainstem), FV (Forth
Ventricle), NF (Nasopharyngeal mucosa), Cerebellum, Mucosa (Oropharyngeal mucosa), Pons (Pons), WB (Whole brain).
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Bigger numbers=
more powerful stats=
Better patient care
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Aspiration Pneumonia After Concurrent Chemoradiotherapy for
Head and Neck Cancer

Beibei Xu, PhD'; Isabel J. Boero, BS?; Lindsay Hwang, BS®; Quynh-Thu Le, MD? Vitali Moiseenko, PhD?;
Parag R. Sanghvi, MD? Ezra E. W. Cohen, MD? Loren K. Mell, MD? and James D. Murphy, MD, MS?

C 0%

p<0.001

Cumulative Incidence

Patient age
10% — 6674
— 75-84
— 285
0%
0 2 4 6 8 1

Years from radiation

Figure 2. The cumulative incidence of aspiration pneumonia i



Prevention and Treatment of Dysphagia and Aspiration
After Chemoradiation for Head and Neck Cancer

David I. Rosenthal, Jan 5. Lewin, and Avraham Eisbruch

Table 2. Chemaradiation Trials: Therapeutic and Functional Gutcomes

Trial Radiation Theramy Chemotherapy Mucositis Grade 3 + 4 Swallowing Toxicity
RTOG 99-14% 72 Gy over 6 weeks; single Cisplatin BY % FT rate, B29%; 1 yvear, 40.9%; Z yvears, 21 8%
arm; phase ||
Starr™® 69.89 Gy over 38 days Fluorouracil + carboplatin BB8% v bh2%; P = .01 Z-wear FT ates, B1% v 26%; P = 02
RTOG 91-11% 70 Gy over 7 weeks Cisplatin 43% v 24% 1 year, softs or liquids onby, 23% v9%; 1

yvear, FT, 3% v none; 2 years, 14%-16% of
both groups had “difficulty swallowing™

|mtergroup 0128 70 Gy over 7 weeks Cisplatin A3% v32%; P= 0B B2% v40%; P = 08; acute FT ratios
Ahbithol™® 74,4 Gy over 16 weeks Cisplatin; fluorouracil + 66 % 5%, pharynx soft tissue necrosis; 6%,
mitomycin-C aspiration pneumaonia chronic; 18% FT
dependent chronic; 7%, liquids anly
Eisbruch™ 70 Gy, single arm; phase | Gemcitabine Grade 3 or higher for all Acute FT rate, 82% all, 92% > 10 mg/m®;

chronic FT rate, 28% (associated with
pharyngeal ulceration, aspiration, and
abstruction not relieved by dilation

GORTEC 94-01% 70 Gy over 7 weeks Carboplatin + fluorouracil Grade 34; 71% v 39% FT rates overall, 37% v .16%; P = 02; 15%;
= 10% weight loss, 14% vB%; P = 04
Kies™” 75 Gy over 9 weeks; single Paclitaxel; carboplatin; 1-year FT rate, 20%
arm; phase | fluorouracil

“Abbreviations: BTOG, Radiation Therapy Oncology Group; GORTEC, Groupe Oncologie Radiothérapie Téte Et Cou; FT, feeding tube.

VOLUME 24 - MUMBER 17 - JUMNE 10 2006

JOURNAL OF CLINICAL ONCOLOGY



Volume of anterior oral cavity (%)

Candidate predictors of post-IMRT swallowing dysfunction @ D. L. Sciiwartz et al.
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Where to spare?

Fig. 1. Swallowing structures: superior pharyngeal constrictor mus-
cle (cyan blue), middle pharyngeal constrictor muscle (red), inferior
pharyngeal constrictor muscle (green), upper esophageal sphincter
(yellow), esophagus (dark blue), base of tongue (white), supraglottic
larynx (orange), and glottic larynx (magenta).



ST R Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 2, pp. 385-392, 2009
i Copyright © 2009 Elsevier Inc.
Printed in the USA. All rights reserved
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CLINICAL INVESTIGATION Head and Neck

DYSPHAGIA AFTER CHEMORADIOTHERAPY FOR HEAD-AND-NECK SQUAMOUS
CELL CARCINOMA: DOSE-EFFECT RELATIONSHIPS FOR THE SWALLOWING
STRUCTURES

Pier Dirix, M.D.,* SARAH ABBEEL, M.D.,* Bianca VANSTRAELEN,* RoOBERT HERMANS, M.D. PH.D.,’
AND SANDRA Nuyts, M.D. PH.D.*

Departments of *Radiation Oncology, and "Radiology, Leuvens Kankerinstituut, University Hospitals Leuven, campus Gasthuisberg,
Leuven, Belgium

390 1. J. Radiation Oncology @ Biology @ Physics Volume 75, Number 2, 2009

Table 8. Overview of the literature

Dosimetric parameter

First author (Ref.) No. Site Mean PC  Mean larynx Mean ES V50PC V60 PC V50 larynx V60 larynx  Endpoint
Feng (18) 36 OP/NP 0.008 0.032 NS 0.008 0.006 0.016 NS VF
Levendag (19) 56 OoP 0.02 - NS - - - - HNSW
Jensen (20) 25 HP/OP/NP NS 0.048 NS NS NS NS 0.035 HNSW
Caglar (21) 96 All 0.007 0.003 NS 0.05 NS 0.04 NS VF
Present study 53 All 0.02 0.04 NS 0.04 NS 0.08 NS HNSW

Abbreviations: ES = esophagus; HNSW = QLQ-H&N35 swallowing symptom score; HP = hypopharynx; No. = number of patients included
in the analysis; NP = nasopharynx; OP = oropharynx; PC = pharyngeal constrictor muscles; VF = videofluoroscopy.
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Radiotherapy

Radiotherapy and Oncology

ELSEVIER journal homepage: www.thegreenjournal.com

Swallowing dysfunction

A predictive model for swallowing dysfunction after curative radiotherapy
in head and neck cancer

Johannes A. Langendijk >, Patricia Doornaert?, Derek H.F. Rietveld ?, Irma M. Verdonck-de Leeuw®,
C. René Leemans <, Ben J. Slotman®
* Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands

" Department of Radiation Oncology, University Medical Center Groningen, The Netherlands
“Dep of Otolar /Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands

J.A. Langendijk et al./Radiotherapy and Oncology 90 (2009) 189-195 193
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Fig. 1. Final model with probability on grade 2-4 RTOG swallowing dysfunction at 6 months as a function of the total risk score. The observed NTCP values all fall within the
95% confidence interval.
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Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 52-59, 2011
Copyright © 2011 Elsevier Inc.
Printed in the USA. All rights reserved
0360-3016/$—see front matter

doi:10.1016/j.ijrobp.2009.10.057

CLINICAL INVESTIGATION

Head and Neck

WEEKLY DOSE-VOLUME PARAMETERS OF MUCOSA AND CONSTRICTOR

MUSCLES PREDICT THE USE OF PERCUTANEOUS ENDOSCOPIC GASTROSTOMY
DURING EXCLUSIVE INTENSITY-MODULATED RADIOTHERAPY FOR

OROPHARYNGEAL CANCER

GiuserPE SANGUINETI, M.D.,*! G. BrRanpoN Gunn, M.D.,* BrenT C. PARKER, Pu.D.,*
Eucene J. Enpres, C.M.D.,* JInG ZENG, M.D.,Jf AND CrLaupio Fiormvo, Pu.D.}

*Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX; 'Department of Radiation Oncology and
Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD; and iDepa.rl:ment of Medical Physics, San Raffaele Scientific

Institute, Milano, Italy

Dosimetric predictors of PEG tube placement @ G. SANGUINETI ef al. 57
Table 3. Summary of results of univariate logistic analysis (p values <0.20)*

Variable Structure OR 95% CI p
Dmean (cGy) Oral mucosa 1.0016 1.0003-1.029 0.015
Dmeanw (cGy) Oral mucosa 1.0073 1.0022-1.0124 0.005
V9.5 Gy/week (cmg’) Oral mucosa 1.029 1.010-1.049 0.003
V10 Gy/week (cm3) Oral mucosa 1.024 1.008-1.041 0.003
Dmeanw (cGy) Larynx 1.0033 0.9997-1.0070 0.07
Dmeanw (cGy) Superior constrictor 1.0061 1.0018-1.0104 0.005
Dmeanw (cGy) Middle constrictor 1.0072 1.0023-1.0121 0.004
Dmeanw (cGy) Inferior constrictor 1.0051 1.0071-1.0095 0.02
Fractionation (no- 0.17 0.05-0.63 0.008

HYPER vs HYPER)

Abbreviations as in Table 2.

* Endpoint: risk of =3-month percutaneous endoscopic gastrostomy dependence.



Beyond mean pharyngeal constrictor dose for beam path toxicity in
non-target swallowing muscles: Dose-volume correlates of chronic
radiation-associated dysphagia (RAD) after oropharyngeal intensity
modulated radiotherapy *

MD Anderson Head and Neck Cancer Symptom Working Group |

Recursive partitioning analysis

Confirmatory univariate nominal logistic regression

Muscle W-level Percent- ROC AUC  ROC AUC LogWorth  p-Value 55 Odds ratio (95% C1)  Relative risk (95% BIC ABIC  Evidence
OAR threshold (%) cohort holdback Cl) grade §
(test) (verification)

ADM 60 79 0.68 0.60 5.95 <0001 7 2.88(1.32-6.12) 2.48 (1.32-465) 21655 1221 Very strong

BM 35 b65.8 065 057 1.09 0OE15 ns. -

CPM 45 0.35 0.64 0.51 1.00 00958 ns. -

GG 35 08.9 0.70 0.55 274 (L0018 - 3.65 [(1.69-8.54) 3.17 (L.53-6.57) 21208 773 Strong

IPC J0 08.2 0.60 0.51 1.08 00831 I.5.

ITM 47 09.9 067 0.44 283 00015 : 266 (1.13-5.90) 230 [1.18-4.48) 21848 14.14 Very strong

LPM bE 13.1 0.53 0.35 1.07 0.0EE0 s -

LEX 63 1 061 047 0.89 01274 ns. -

MHM 69 17.5 0.74 0.64 6. 77 <0001 o 4.54 (2.14-10.33) 3.81 [1.B9-7.67) 20434  0.00 BlCrminimum
(reference)

MM bb 4.4 D61 0.53 088 01314 ns. -

MPC 49 09.9 0.63 0.54 0.17 06825 s -

MPM 70 1 0.59 0.45 3.31 0.0005 ’ 2.64 (127-5.72) 237 (1.22-4.60) 21660 1225 Very strong

PDM 69 13.5 0.60 0.48 015 07070 s -

PGM b3 68.9 0.62 045 0.24 0.5732 ns. -

S5PC FiLl] b.35 068 047 5.09 <0001 - 10,60 (3.12-45.16) 9.00(2.20-36.83) 20514 (.80 Weak

" Statistically significant at P < 0.05.

" Statistically significant after Bonferroni correction.



Fractional volume

10 20 30 40 50 60 700

Muscle OAR

10 20 30 40 50 60 700
Dose bin (Gy)

Chronic-RAD
—No
—Yes

Each error bar is constructed using a
95% confidence interval of the mean.
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But need way to link dose to ROI and clinical

outcomes In large datasets

Cohort
<62

All pis
+ <62

* Allpis

40%

Logistic probability of Chronic-RAD

10%

0% :
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
MHM V69 (percent)

Fig. 4. Chronic RAD as a function MHM V69 by Age. Composite plot of MHM V69 {as
a continuous variable) and age cohort (green shading denotes the observed whole
population; red identifies patients over 62 years of age; blue indicates patients less
than 62 years old). Smoothed fits are shown with color-specific elllpses covering
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MDACC is big...

« 8 Head and neck only Rad oncs
* Treat ~1,000 cases annually

6 distinct platforms used for portions of
segmentation/optimization tasks (Monaco, Brain
lab, Pinnacle, Eclipse, 2 internal custom
platforms for MC)

« 4 additional software platforms used for dose
calculation/DVH analysis (Velocity, MimVista,
Slicer3D, CERR)

« But we couldn'’t effectively aggregate data from
DVHSs!!



For head and neck and enormous amount of

structures are being optimized/evaluated

— Internal complexity check showed an average of 3 target volumes per
MDACC head and neck patient (stable)...

— *Average* number of OARSs constrained for IMRT optimization increased
from 3 >> 9 per patient; as many as 25+ ROIs for complex sinonasal
cases

— Routinely used include:
- Cord
« Parotids (L/R)
* Brainstem
» Cochleas (L/R)
* Brain
e Larynx
« Mandible
« Submandibular glands (L/R)



2014 internal survey

Electronic data capture of 512 IMRT head and
neck cases (bulk pull from DVH archives)

Showed 78 identifiable TVs/OARs
(concatenating intermediary "ring” or “sub”
structures

Counted “name variants”

— E.g. "tongue, oral tongue, tng”, all counted as
variants of “Tongue”.

Laterality ignored
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Example: Parotid Glands

* 192 “nominal variants”
— Most common ("R_Parotid”) was used 68% of the
time
— Multiple structures on several patients
(“R_parotid_sub”)
— Unclear which was optimized
— Unclear if manually or autosegmented



The Post-Hoc Nomenclature Solution:
Fellows!

2011-2015

Esengul

Manee-Naad

Jared
Kocak-Uzel Ruangskul, Sturgeon
N MD, | MD MD, PhD
Sisli Eftal Univ., Mahidol University, MDACC
Turkey Thailand

Sasikarn
Chamchod
MD
Chulabhorn Hosp..
Thailand



ICRU 50/62-based TV contouring

GTV — Gross disease

CTV1 - Gross disease + 8mm — 1cm margin

CTV2 — “High Risk” nodal volumes and mucosal sites

« A somewhat ambiguous volume that means different things to
different individuals.

« Optional volume in many RTOG protocols
— l.e. uninvolved level Il nodes in base of tongue cancer.

— the right base of tongue in a left cancer of the
glossopharyngeal sulcus

© 1'/% = Uninvolved nodal regions at risk for microscopic disease
extension



Example case from 2013
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The Core Process begins...

FIGURE 3. DATA STANDARDS/DICTIONARY
DEVELOPMENT STEPS

IDENTIFY DATA,
ELEMENTS FROM
DECISION CRITERIA

CREATE DATABAS

OF ALL REASONABLE
ELEMENT WORDINGS AND
DEFINITIONS

CONSENSLIS-
DERIVED STANDARDIZED
DATA ELEMENTS AND
DEFINITIONS

DATA DICTIONARY
(PUBLIC);
DATABASE CONSTRUCTOR
(PROPRIETARY)

CONTINUGOUS
REVIEW AND
FEWISI N

K. Hammermeister, MD (http://www.uni-mainz.de/FB/Medizin/Kardiologie/incis/Data/p4_1.htm)



Enter RTOG/ATC/TG-263

Uniform Tissue Names for Use in RTOG Advanced Technology Clinical Trials

Walter R. Bosch, D.Sc.

Consistent naming of contoured structures used in radiotherapy treatment planning is essential to
facilitate the comparison of dose-volume statistics across patients for quality assurance and outcomes
analysis. Maintaining consistency in structure names is particularly important (and challenging) in multi-
institutional clinical trials, in which treatment planning data are collected from many participating
institutions. Differences in treatment planning techniques and local languages are among the factors
that contribute to variations in the names used to identify structures.

The Image Guided Therapy QA Center (ITC) has developed a Digital Data Integrity QA process to examine
submitted RT treatment planning data for completeness and consistency. This process involves
resolving discrepancies between submitted and protocol-specified structure names. For some data sets,
the mapping between submitted and protocol-specified structure names is obvious, and the process of
assigning standard names using ITC tools is straightforward. Other cases, however, require visual
inspection of images and contours to identify structures. For trials involving disease sites with many
organs at risk, e.g., H/N IMRT, the effort required to correctly identify all structures can be substantial.

http://atc.wustl.edu/resources/RTOG-ATIC/ATIC-ATC_Uniform_Tissue_Names.pdf



Uniform Tissue Names for Use in RTOG Advanced Technology Clinical Trials

Walter R. Bosch, D.Sc.

A. Organs at Risk

1. Alist of base names for organs at risk is given in Table 1, This list is not exhaustive. Itis
expected that it will be extended in a consistent manner as new protocols are written.

2. For paired organs, right or left organs are identified by appending “ R” or “_L" to the base
name. E.g., LUNG_L

3. For geometric extensions of organs (PRVs) with uniform margin, a suffix of “_PRVm” is
appended to the base name, where m is an integer indicating the size of the margin in mm,

e.g., SPINAL CORD_PRV5. Non-uniform PRVs are identified using the suffix “_PRV", i.e,
without margin size.



Structure Name

Paired?

MAIN_BRONC

L/ R

OPTIC_NRV

_L/_R

ORAL_CAVITY

OVARY

_L/_R

PAROTID

_L/_R

PENILE_BULB

PERINEUM

PHARYNX

PITUITARY

PROSTATE

RECTUM

RETINA

_L/_R

RIB

SACRUM

SEM_VES

SKIN

SM_BOWEL

SPINAL_CORD

STOMACH

SUBMND_SALV

_L/_R

TEMP_LOBE

_L/_R

TESTIS

_L/_R

THYROID

Structure Name Paired?
ANAL_CANAL

BLADDER

BRAC_PLX L/ R
BRAIN

BRAINSTEM

BREAST L/ R
BRONC_TREE L/ R
CARINA

CAUDA_EQUINA

CEREBELLUM L/ R
CEREBRUM L/ R
CHIASM

CN_VII L/ R
CN_VIII L/ R
COCHLEA _L/_R
CORNEA L/ R
DUODENUM

EAR_MID L/ R
FAR_EXT L/ R
ESOPHAGUS

FEMUR L/ R
GLOBE L/ R
GLOTTIS

GREAT_VESS

TM_JOINT

_L/_R

HEART

TONGUE




HOW STANDARDS PROUFERATE:
(S8 AVC CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, E£TC)

17! RiDIicULoUs! ISCEN: |
WE NEED To DEVELOP |
_ ONE UNIVERSAL STANDARD
GITUATION: THAT COVERS. EVERYONES SITUATION:
THERE ARE USE CASES.  vepun THERE ARE
4 COMPETING Ne il |5 COMPETING
STANDFRDS. ﬁ STANDPRDS.




Standardizing Naming Conventions in Radiation Oncology

Lakshmi Santanam, Ph.D.,* Coen Hurkmans, Ph.D.,” Sasa Mutic, Ph.D.,*
Corine van Vliet- Vroeglndewm], Ph.D. iScutt Brame, Ph.D.,* William Straube M.S..*
James Galvin, D.Sc.,’ Prabhakar Tripuraneni, M.D.,’ Jeff Michalski, M.D.,*

and Walter Bosch, D.Sc.” Int J Radiation Oncol Biol Phys, Vol. 83, No. 4, pp. 13441349, 2012

Table 2 Planning organs at risk volumes

Organ at nsk name Left/right Margin (mm) Proposed name

SpinalCord NIA Nonunitorm SpinalCord_PRV
SpinalCord PRV N/A 3 SpinalCord _03
Parotid Lett () Parotid L
Parotid Right () Parotid_R
Total parotid Left4Right () Parotids

Kidney Lett 10 Kidney_L_10




Solution: TG-263

Charge Fadilitate improvements in clinical trials and outcome studies by standardizing

1. Structure names across imaging and treatment planning system
platforms. Nomenclature will be defined, at minimum, for all
anatomic structures identified as by the group as relevant to
radiation oncology. The nomenclature schema should be
expandable as other structures are identified in future as relevant.

2. Nomenclature for elements of the dose volume histogram curve and
related data.

3. Developing templates for clinical trial groups and users of specific
software platforms.



Let’s start by trying to fix the standardization problems for DVH data
TG 263 - Standardizing Nomenclature for Radiation Therapy

. group of 57 stake holders

. domestic and international groups

. representing a broad range of perspectives
Physician ASTRO Academic IHE-RO
Physicist AAPM Community Dicom Working Group
Vendor ESTRO Large Practice NRG

Dosimetry Small Practice IROC




Development Process

q — q Work With Design q
Define Apply to Stakeholders

i 1 . Changes
Review Guidelines Structures Pilot
current Nomenclature
practices Live in
Volunteer Clinics
Review and NRG Feedback
i From Use
with
Group
Only minor
changes
from Pilot

Slide courtesy of Chuck Mayo

}
A

NG OUTCOMES.



Task Group findings are in parent committee review process

* Guidelines
* Target Structures
e Standardized rule based approach (10)
* Addresses primary issues and expandable

* Non-Target Structures
* Rule based approach (15) with a few concessions

» Specific listing of 736 defined structures

e DVH Nomenclature

Slide courtesy of Chuck Mayo




So, we implemented the new system

e V1.0

* A designated “faculty champion” encouraged
MDs to use the new nomenclature.
* Result: Benign neglect




Insight: MDs hate to type

« V2.0

— Script populated a standardized ROl list in
random colors, in alphabetical order

— Result: ~60% compliance




2016 V3.0
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Insight: MDs like their “system”

* V3.0 -
— Script populated a standardized ROI list in
standard colors, in order of use (GTV, CTV,
commonly used OARS)

Brain=tem PEWH

— Result: >85% compliance

=
Ak
=
=]
=
j=N
—

fsParotid L Sub

l

aratid R

sParotid B Sub

Cochlea R

v

‘Cochlea L

A

_—

]
[
]
o
[
]
o
[
i
)
]

2ud)
9
.
”
P

sophagus

=N Ga
J
1]
5
;
"

-



What made it work?

« Ease of use
— MDs were saved effort by ROI auto-population
* Familiarity

— Standardized color/polygon modes made direct
Interaction easier after

— Intuitive ordering






Base of Tongue isodose display

fAbsolute ; fAbsolute i fAbsolute
7000,0 cby y . 7000,0 chy P b 7000,0 cly

5400,0 cOuglh b | 5400,0 cud 5400,0 cGy 4

4500,0 cGCd | 4500,0 cGY P G 4500,0 cf

Absolute
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5400,0 cly

4500,0 cby :

Slide courtesy Adam Garden



Personalized radiotherapy: concepts, biomarkers and
trial design

“2A H REE, MD, PhD and 'K R REDALEN, PhD

B![} DAYA

“LO‘ ‘u
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Integration of imaging information in

designing treatments

Populations, cohorts, and personalized radiotherapy
D 0 0 @

—_—
Image-based characterization High-performance, Adapted Imaged anatomical
Patient factors and tissue-based biomarkers documented delivery  treatment and functional changes Outcomes

A A A A A

Pretherapeutic activity Guide Peritherapeutic activity

Jaffray, D. A. (2012) Image-guided radiotherapy: from current concept to future perspectives
Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2012.194




REVIEW Meldolesi, van Soest, Damiani et al.

z Research
"
=
k=]
:
£
E Procedure
:
E
Registry

Increasing descriptive power

Meta-language domains

Local data Gichal data Global data Triple stores,
e . dictionaries dictionaries logics,
dictionaries

(literature bound) - (certification bound) topic maps

Typical region of knowledge
representation, sharing and
e reasoning for computers

Typical region of knowledge .
representation, sharing and K
reasoning for humans J

Semantically
annotated
triple stores,
higher order logics

Complexity

Figure 1. Possible evolution in knowledge representation, seen from the perspective of computer science, under a qualitative

point of view.




SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology
Indrin J. Chetty, PhD,* Mary K. Martel, PhD,” David A. Jaffray, PhD,*

I. Integrating radiation oncology databases across the computational backgrounds. Training grants for devel-

discipline will facilitate science and elevate the quality of
care (45). The creation of a Virtual Clinical Trnals Group
that cnables federated databases at different mstitutions
for conducting cooperative research is a consideration.
Shanng practices and outcomes will permit high mean
and tight vanance in clinical practice and will improve
guality (46],

2. Tools need to be created and made available for patients

and physicians to discuss treatment options, as recom-
mended by the Patient-Centered Outcome Research
Institution. Such an approach will drive the development
of metatreatment planning systems, in which one pre-
scribes an outcome, not a treatment {eg specification of a
95% local control rate at 5 years with 5% grade 3 or
more dyspnea) (6, 47} This could also be expanded
beyond radiztion oncology.

. Expertise in the informatics domain among radiation
oncology professionals needs to be developed (6). The
most suitable candidates with the appropriate skill sets
and multidisciplinary knowledge to succeed in this space
are likely medical physicists or physicians with strong

oping programs for oncology informatics will provide
these individuals with the knowledge needed to support
informatics research imbiatives.

. Informatics tools need to be developed to support the

monitoring of the guality of oncology care at the point(s)
of delivery (48). Real world—based evidence approaches
are emerging in other domains and will also benefit the
field of radiation oncology. The often-quoted statements
that 5% differences in dose result in significant changes
in tumor control and normal tissue complication proba-
bilities will be reinforced or challenged through col-
lecting and sharing data from the entire clinical process.



“Where standards exist...use them!”
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FIGURE 5. Validation for format, fields, and values against
standards: a simple configuration for standards designers.

Informatics in Clinical Research in Oncology
Current State, Challenges, and a Future Perspective

Amar PS. Chahal, MEBS, FRCS, MBA



Treatment Planning

L

Treatment Delivery

[2] Field planning
at Treatment
Planning System

[3] Generation of
DRR as reference
image

[4] Transfer of

radiation plan to
prescription
sheet 4

[1] Acquisition DICOM
o

DICOM-RT and Its Utilization in
Radiation Therapy!

[5] Scheduling of

treatment sessions
at Treatment
Information S

[7] Delivery of N
radiation dose )
| mear
Accelerator

[8] Generation of

A portal image
taken al Linear
Accelerator

[6] Verification:
comparing portal
image with
reference image
at step [3)

MariaY. Y. Law, PhD * Brent Liu, PhD

Figure 3. Chart illustrates radiation therapy work
flow. Yellow boxes indicate the DICOM-RT objects
that could be generated within the work flow. A radia-
tion therapy treatment plan (step 2) with radiation
dose distribution involves the superposition of the
radiation therapy objects RT Plan, RT Structure Set,
and RT Dose on the corresponding set of DICOM
computed tomographic (CT) scans according to the
coordinates in the DICOM-RT standard. Because the
work flow is for external beam therapy, the RT Brach
Treatment Record information object is not shown.
DRR = digitally reconstructed radiograph, DVH =
dose-volume histogram.



TABLE 5.3 Base Names for Organs at Risk

Structure Name Paired? Structure Name Faired?
ANAL CANAL MAIN_BRONC
BLADDER QFTIC_NRY LI R
BRAC_PLX _LI R ORAL CAVITY
BEAIM OVARY IR
BEAINSTEM PAROTID LI R
BREAST _LI R PEMNILE_BULE
BROMNC_TREE PERINEUM
CARINA PHARYMNX
CAUDA PITUITARY
EQUINA
CEREBELLUM _LI R PROSTATE
CEREBRUM _LI_R RECTUM
CHIASM RETINA LI R
CHN_VII LI R RIB
CHN_VINI LI R SACEUM
COCHLEA _LI_R SEM_VES
CORNEA _LI R SKIN
DUDDENUM Shi_BOWEL
EAR_MID LI R SPINAL CORD
EAR_EXT LI R STOMACH
ESOPHAGUS SUBMND_SALV LI R
FEMUR _LI R TEMP_LOBE LI R
GLOBE _LI R TESTIS LI R
GLOTTIS THYROID
GREAT_VESS TM_JOINT LI R
HEART TOMNGUE
KIDNEY _LI R TRACHEA
LG BOWEL URETHRA
LABRYNX VULWVA
Ll (Gl _LI R
LEMS _LI R
LIPS
LIVER
LUNG
MAMNDIELE

Sowrce: From Bosch, W. B, Uniform Tissue Names for Use in RTOG
Advanced Technology Clinical Trials, August 19, 2009, Available at httpe/fate.

wustledu Accessed 1 December 2009,

Nofe: Where paired organs are indicated, laterality is indicated by append-
ing “_L* or *_R” to the base name. Geometric extensions of these structures
are indicated by appending ®_PEVm,” where i is the nominal margin (mm)

used to extend the strocture.

~We're just now
“agreeing on the
ontology of
“structure names
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Patient Reported Outcomes (PROs) in Clinical Trials: Is
‘In-Trial’ Guidance Lacking? A Systematic Review

Derek G. Kyte'*, Heather Draper?, Jonathan Ives?, Clive Liles®, Adrian Gheorghe', Melanie Calvert’*
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Steve Langer' and Brian Bartholmai'

Imaging Informatics: Challenges in Multi-site Imaging Trials

Table 1
Radiotherapy research data types within their commaon |T systems.
Information type Data examples IT
SYStEm
Baseline climical Demographics [including co-morbidity and — HIS,
data family history), TNM-stage, date of TDS
diagnosis, histopathology
Diagnostic imaging  Diagnostic CT, MR and PET imaging PACS
data
Radiotherapy Delineation/structure sets, planning-CT, PACS,
treatment dose matrix, beam set-up, prescribed dose RIS
planning data and fractions
Radiotherapy Cone beam CTs, orthogonal EPID imaging, PACS,
treatment delivered fractions RIS
delivery data
Non-radiotherapy surgery, chemotherapy HIS,
treatment data TS
Dutcome data survival, local contral, distant failure, EDC,
taxicity [including patient reported TDS
outcomes], quality of life
Follow-up imaging Follow-up CT, MR and PET imaging PACS
data
Biological data sample storage, shipping, tracing and lab LIMS
results
Additional study Study design, protocol, eligibility criteria EDC,
conduct data CTMS




Data collection

Benefits of a clinical data warehouse with data mining tools to @mmm
collect data for a radiotherapy trial

Erik Roelofs **!, Lucas Persoon !, Sebastiaan Nijsten?, Wolfgang Wiessler”, André Dekker !,
Philippe Lambin *!

* Departmend of Redistion Oncolagy {MAASTRO Clinic), Maastriche University Medical Centre [MUMC), The Netherlands; " Slemens Healthcare, Malvern, PA, U5A

Clinical domain

Extraction © 2012 Ted Goff
- services |

Sync manager

Private
sandboxes [
Project 1 -';"2

CAT DB

Project 2

+

(mirror)

Project

m mm “Here’s a list of IOOO

Research domain

Fig. 1. Schematic overview of the CAT data warehouse/research portal. The system wa re ho u ses fu I] Of da ta' I d ]] ke

synchronizes data from clinical data sources and custom services. It is also capable

of collecting data for trials and data collected for other research purposes. For data yo u to co n d ense th em down to

export, several modules exist in the system and are easily accessible by web-
technology {i.e. the patient browser, query builder and an electronic case report

e one meaningful warehouse.”



176 Data mining for radiotherapy trials

Table 1
Parameters collected for the NSCLC and rectal cancer groups. The last columns show which data were looked up where and from which source the data were recalculated.
Parameter NSCLC Rectum Source Action
Manual Automatic
Gender i i Chart EMR Looked up
WHO score W W Chart EMR
TNM staging W W Chart EMR
Chemo therapy W W Chart EMR
Number of positive lymph nodes i v Chart EMR
Tumour PA W W Chart EMR
pCR W Chart EMR
Survival o W Chart EMR
Total delivered dose o W RE&V R&V
Overall treatment time i v R&V R&V
GTV volume o W Xio PACS Recalculated
Vs Lungs® Xio PACS
Voo Lungs Xio PACS
Vao Bladder Xio PACS
MLD i Xio PACS
SUV Max Tumour TrueD PACS
SUV Mean Tumour TrueD PACS

* Vs and Voo data for the lungs were calculated with both lungs minus the PTV.
® MLD data for the lungs were calculated with both lungs minus the GTV.



Innovative data structures

Serial patient reported measures

= |
]

Serial CQIB MRI

=

-

——

ClinicStation EMR data

—

Mosaia EMR RT data
‘P

e BB B B A e b A— - — -

———

Adaptive RT CT/dose grid



Digression: We need more radiation oncologists and

Informatics folks working with medical physicists!

 Growth of information has

: _ Bnard of Prevengs, -
led to creation of a new A e By,
" : (i o hp
medical subspecialty ¢
ificati S
board certification... -
@lifton Bavid Fuller, MB, PHB
* B Ut feW rad OnCS . s salisfied the vequivements of the Bowrd and has Hereby
boen cwaeded corfeation in the Slipecially of
* Most informaticists are _
EHR-oriented (AMIA)... P ke P b

A Mamber Bowsd of Ho Smorcan Boasd of Hobent Hociatbes

* And those that know
DICOM are typically
PACS-oriented (SIIM).



Next step: from

A formal theory for spatial representation and
reasoning in biomedical ontologies

Ontology to
Mereology

Maureen Donnelly *, Thomas Bittner2:®, Cornelius Rosse ¢
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Oxy
PPxy Oyx
PP 'yx {e.g. x i1s my veriebral
(e.g.. x is my left ventricle column and y is my
and v is my heart) bony pelvis)
~PCoin(x, v)
~PCoin(y, X)
{e.g. x is my heart and y is my
liver)
Loc-Inix, v} & -Oxy e
' N, . s PCoin(x, v) & ~Oxy
T S PCoin(y. x) & ~Oyx
(e.g. x is a bolus of food and v - )

: . {e.g. x is my esophagus and v is my
is my stomach cavity) & y phag ? £

mediastinal space)

Figure 1 Basic spatial inclusion theory (BIT) relations.

Artificial Intelligence in Medicine (2006) 36, 1-27



What if the TPS already incorporated spatial

classifiers for OARs (or TVs) based on TG-263?

Thaoracic
,’ Cavity

PP,
part_of

lwfr |rr.”i'
Mediaseinal
.'!'lr NI

Heart

~igure 3 Potential for reasoning about parthood and
“ontainment in the FMA.

Pelvic Caviry
Contains
(Loc-In "}

Cvarian Artery

- MWale Pelvie Cavity

Lontains

Figure 5 Reasoning about containment and subclass
relations in GALEN.

Artificial Intelligence in Medicine (2006) 36, 1-27



“Where standards exist...use them!”

VBIUES OF | e g i '
I_—E!!.jtanln ﬂ'ﬂﬂi = - F.EEE I:I'Fﬂ ._-xx
Send Emr:/
FI:-EFE_;IE!:\IE-
Send PASS
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Dictionary Pass or Fail
S / Standards
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| Log and Track each step for Audit and Certification

LS -

FIGURE 5. Validation for format, fields, and values against
standards: a simple configuration for standards designers.

Informatics in Clinical Research in Oncology
Current State, Challenges, and a Future Perspective

Amar PS. Chahal, MEBS, FRCS, MBA



Better prediction models?

<3
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Figure 4. Web-based Therapy Explorer: Patient prognosis for a white female subject with T3 stage supraglottic cancer. The mosaic
(top left) shows the T3 female subgroup has particularly low mean survival rates, close to those of the more severe T4 category. The
Kaplan Meier chart (top middle) also predicts similar trajectories for T3 and T4 categories; the ribbon bands are std deviations. The
star panel (top right) shows the patient along with the 5 most similar patients in the cohort repository; the varying color of the
glyphs, from blue to orange, captures a notable variation of therapy outcomes. The interactive nomogram view (bottom) shows that
despite the variation in the treatment course for two similar patients, the survival outcomes (rightmost axis) are very similar and
fairly low. The four encodings are linked through interaction; 4 filters are currently applied along the first nomogram axes.



Spatial data?

Figure 2. Topological map (blue) defined over lymph node regions,
overlaid with a dual graph representation (red) of the map.
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Figure 3. Lymph node distributions of 11 patients, ranked by their similarity to Patient #6. Patient #6 (shown top left) has two nodes
affected along a chain, in regions 2 and 3, left side. The most similar case in this set has one more node along the same chain; the
next 4 most similar cases have one node affected in region 2; the next two have combinations of node 2 with a node along another
chain; while the 3 least similar ones have no nodes affected. This automated similarity technique detects seamlessly symmetric
cases: in the top row, the last 4 cases have the one-node pattern bilaterally, on the right, on the left, and respectively on the left.
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Example: FMA

The Foundational Model of Anatomy ontclogy contains approximately 75,000 classes and over 120,000 terms; over 2.1 million relationship instances from over 168
relationship types link the FMA's classes into a coherent symbolic model. The FMA is one of the largest computer-based knowledge sources in the biomedical
sciences.
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http://si.washington.edu/
http://si.washington.edu/

Content-specific auditing of a large scale anatomy ontology

Ira J. Kalet2P<4+ Jose L.V. Mejino 9, Vania Wang ¢, Mark Whipple ¢, James F. Brinkley >¢<

Fig. 2. A diagram showing some of the lymphatic chains and nodes in the head and
neck region, illustrating the “efferent to” and “afferent to" relations. In this diagram,
node A is efferent to node D, and is afferent to nodes B and C. The arrows just show
the direction of flow of lymphatic fluid.

L. Kalet et al / Journal of Biomedical Informatics 42 (2008) 540-549

Table 1

Contents of “efferent to” slots of some lymphatic chains and lymphatic vessels,

Chain or vessel name

Contents of “efferent to™ slot

Pulmonary lymphatic chain

Subdivision of pulmonary lymphatic chain
Axdillary lymphatic chain

Subdivision of axillary lymphatic tree
Posterior mediastinal lymphatic chain

Tracheobronchial lymphatic chain

Tributary of tracheobronchial lymphatic chain

Left cardiac tributary of tracheobronchial
lymphatic chain

Brachiocephalic lymphatic chain

Right cardiac tributary of brachiocephalic
lymphatic chain

Lymphatic capillary

Tributary of lymphatic trunk

Superficial lymphatic vessel

Deep lymphatic vessel

Lymphatic trunk

Bronchopulmonary lymphatic
chain

NIL

Subclavian lymphatic trunk
Subclavian lymphatic tree

NIL

Thoracic duct
Tracheobronchial lymphatic
chain

Bronchomediastinal lymphatic
trunk

Bronchomediastinal lymphatic
tree

NIL

NIL

Bronchomediastinal lymphatic
trunk

Bronchomediastinal lymphatic
tree

NIL

MIL
NIL
MIL
NIL
MIL

http://si.washington.edu/projects/fma



Anatomical Information in Radiation Treatment Planning

Ira J. Kalet, Ph.D., Jonn Wu, M.D., Matthew Lease,
and Mary M. Austin-Seymour, M.D.
Radiation Oncology Department, University of Washington, Seattle, WA

James F. Brinkley, M.D., Ph.D. and Cornelius Rosse, M.D., D.Sc. Proc AMIA Symp
Department of Biological Structure., University of Washington, Seattle, WA 999 pp. 291-285

Poem volume sdtae

Figure 1: The Prism anatomy drawing panel showing a thorax cross section. Larger structures are easy to discem, but
important smaller structures such as blood vessels, nerves and lymph nodes are impossible to see in these images.



The future: Centralized & automated

segmentation/prescription

50 Int ] CARS (2016) 11:43-51

Fig. 7 Brainstem segmentation
example. Green represents
manual contouring, while red
bold is the segmentation
provided by the proposed
approach

Table 5 Table that summarizes
results of previous works which

atempied to segment the Babalola et al. [4] Atlas-based 0.94 3.98  120-180min (set of brain
brainstem on MRI images

References Method DSCpVD(%) Segmentation time

structures)
Statistical-based (PAM) 0.88 6.80 ] min 4 20 min®
Statistical-based (BAM) 0.89 7.80 5min 4 3 min®
Expectation—minimization 0.83 21.10 30min (set of brain structures)
Bondiau et al. [5] Atlas-based - =13.11 20min (seven OARs and
seven normal structures)
Isambert et al. [6] Atlas-based 0.85 —14.8 7-8min (six OARs)
Proposed approach 5VM 0.50 359 36.65

DSC and pVD are given as mean values
* These two approaches required registration steps which took 20 min in the first case and around 3 min for
the second method



. Precision

Medicine

Figure 5: Overview of candidate data streams for potential incorporation into precision
medicine models for decision improvement tools.




Predicting the future is not easy...

~ Western Electric
is crossing a telephone

with aTVset.




Thank You!!

* Questions?
« Please emall me: cdfuller@mdanderson.org
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