

Hands-On Workshop: Using Incidents to Improve Patient Care

Moderator: Jean Moran, Brett Miller

- Using Root Cause Analysis When Analyzing Incidents
 - Grace Kim

Classification of Incidents

- Jennifer Johnson

Developing a Corrective Action Plan

- Leah Schubert

Hands-On Exercise

Hands-On Workshop: Using Incidents to Improve Patient Care

Classification of Incidents

Jennifer L Johnson, MS, MBA, FAAPM UT MD Anderson Cancer Center

Classifying the Whys

Human factors

 $\label{lem:https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQK91PtJj050dtYgJGlH2CK6zf46-OsOJePSdgS-IQc94pGAMnK$

Hierarchy of

causality

Technical

Organizational Management Procedural Issues

Human Behavior involving Staff Patient-related circumstances External factors (beyond facility control)

Technical Whys

- Proper acceptance & commissioning
- Equipment design
- Equipment maintenance
- Facility environment

Organizational Management Whys

- Planning program
- Policies & procedures
- Training
- Communication
- Environment
- Leadership

"Don't worry if you don't know the rules – we're making it up as we go along ..."

www.healthcaregovernancereview.org

https://healthcaregovernancereview.files.wordpress.com/2011/07/hgr45_web.jpg

Procedural Issues Whys

Fail to detect developing problem

Fail to interpret develop problem

• Fail to select correct rule address problem

Fail to develop effective plan

Fail to execute planned action

https://img.clipartfest.com/a215f8f661a62d494618540062c5393a_kid-detective-clipart-clipart-

Human Behavior Whys

- Scope of practice
- Mental slip
- Poor judgment
- Language and comprehension
- Intentional violations
- Negligence

http://www.buzzle.com/images/people/activities/kids/science-behind-temper-tantrums.jpg.

MARCH 18–21 | Hilton New Orleans Riverside | New Orleans, LA Ford, E. C., de Los Santos, L. F., Pawlicki, T., Sutlief, S., & Dunscombe, P. (2012). Consensus recommendations for incident learning database structures in radiation oncology. *Medical physics*, 39(12), 7272-7290.

Patient-related Circumstances Whys

- Misleading
- Cognitive performance
- Non-compliance
- Language and comprehension
- Patient medical conditions

http://nspt4kids.com/wp-content/uploads/2011/07/baby-not-wanting-to-eat1-300x200.jpg

External Factors Whys

- Natural environment
- Hazards

http://unique-information.com/wp-content/uploads/2016/02/natural-disasters-490x275.png

Classifying Incidents

Origin vs. Discovered

Classifying Incidents

Medical Severity

Score	Consequences (actual or predicted)
10	Premature death
8/9	Life threatening—intervention essential. Possible recurrence due to underdose.
7	Permanent major disability (or grade 3/4 permanent toxicity)
5/6	Permanent minor disability (or grade 1/2 permanent toxicity)
3/4	Temporary side effects—major treatment/hospitalization
2	Temporary side effects—intervention indicated
1	Temporary side effects-intervention not indicated
0	No harm
	Unknown

Dosimetric Severity

Score	Dose deviation per course
9/10	>100% absolute dose deviation from the total prescription for any structure
7/8	>25%-100% absolute dose deviation from the total prescription for any structure
5/6	>10%-25% absolute dose deviation from the total prescription for any structure
3/4	>5%-10% absolute dose deviation from the total prescription for any structure
1/2	<5% absolute dose deviation from the total prescription for any structure
	Not applicable

A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools.

Douglas Adams

