

MR Protocol Review

Clinical Opportunities for Physicists

Anshuman Panda, Ph.D.

AAPM Spring Clinical Meeting New Orleans, LA March 2017

No conflict of interest to declare

AAPM Newsletter March/April 2017

- Physics Summit on Imaging Physics
 Dr. Thomadsen, AAPM President-Elect's Report
 - "The future of imaging physics is very much more uncertain than the issues discussed at the summit"
 - "Other than [QA] testing and review, further interactions between the medical physicist and the facility depends on the largess of its director since there is <u>no identifiable revenue</u> stream for imaging physics as there is for therapy"

"This is a big loss for the facility, the patients, and the medical physicist"

Technical to Clinical Transition - How?

PROTOCOLS

"It is the scanner protocols NOT accreditation that determines individual patient care'

– Dr. William Pavlicek, Chair Medical Physics, Radiology, Mayo Arizona

Technical to Clinical – MR Safety

MRI safety policy review

- · Level 2 activity mainly carried out by physicians and MRI technologists in many settings
- · ACR Expert Panel on MR Safety publications, most recent 2013
- ACR MRI Accreditation Program 2015 requirement annual review of MR safety program an explicit (Level 1) medical physicist responsibility

Technical to Clinical Transition - How? Diagnostic Work and Workforce Study Subcommittee (DWWSS) – Dustin Gress, Chair Level 1: Well defined, mandated by either regulatory requirements or national accreditation programs and are required to be performed by or under the Level 1 supervision of a medical physicist. Example, annual physics QA Level 2: Somewhat mature, but non-mandatory to be performed by a medical physicist. Medical physicists add value when performing these services. Example, designing a fluoroscopy safety program per Report 168 NCRP Level 2 Level 3: Neither well defined nor mandated by authorities outside the healthcare institution. Broadly categorized as research or developmental services. Example, dual-energy CT dose optimization Level 3 Direct Clinical Impac

Technical to Clinical - CT Protocol

- CT protocol review committee participation Established at Level 2 with the publication of AAPM
 - MPPG #1a
 - Became Level 1 service for all Joint Commission-accredited facilities effective July 1, 2015 with new accreditation requirements for diagnostic imaging
- MR can learn from CT protocol efforts! "Imitation is the sincerest form of flattery"

MANR CP

MR Protocol – DWWSS Level of Service

- Level 1: Required for accreditation under mandatory
 physicist supervision
 - Parameter review for ACR physics phantom QC
 - Annual MR safety survey
 - Acoustic noise GE Silent, Siemens Quite
- Level 2: Structured, needed for accreditation or patient care, medical physicists involvement not required
 ACR parameter review for clinical MR protocols

 - Low-SAR protocol development- Pacemakers, Neurostimulators
- Level 3: Neither well defined nor mandated, primarily research and clinical development activities
 - Image acquisition optimization fat sat, metal artifact reduction
 - New sequences, hardware, software
- Bonus material!

MANR COD

_	MRI Equipment Evaluation S	Summary	MRI Safety Program Assessment Checklist					
IR der 549	Store Neuropean Control of Special Security Special Neuropean Control of Special Security Tatte Explorent Evolution Tests Sea of 11 ab Position Accuracy Taranetter Gane Remainin Geometin Accuracy Networking Control of Accuracy Networking Ardar Classification Ardar Classification Ardar Classification Ardar Classification Ardar Classification Control of Application Magnetin Erd Improvement Magnetin Erd Improvement	Report Date Survey Date Survey Date PessFal	She The slit's written MRI safety policy addresses the following: Yes/No/M Segment MRI metad alreador D. Stila access readiction (MR anno)					
	C. Percent optimic forology (PSG) Soft-Copy (Montor) Caudity Control MR Safety Program Assessment "feets that can be performed by scarning the ACR MRI Phanton		Written policies are present and readily available to facility stat Written policies are reviewed and updated on a regular basis. Facility has appropriate MR safety warning signage and methods of controlled access.					
	Evaluation of Site's Technologist QC Progra	m Pass/F						
1.2.3.4.5.6.7.8.9.	Setup and Table Position Accuracy (weekly) Carter Frequency (weekly) Transmitter Gain or Atternation (weekly) Georetric Accuracy Measurements' (weekly) High-Centrals Spatial Resolution (weekly) Low-Centrals Decktability (weekly) Artifact Esuluation (weekly) Film Printer Qualify Control (if applicable) (weekly) Visual Checklist (weekly)		Comments					
	Medical Physicist's or MRI Scientist's Recommendatio	ns for Quality Improvement	Reviewed by: Cualified Medical PhysicistMR Scientist Date					

tocol	P	e box below ea ecord actual val lace a check me n all parameters	ues if they di wk to indicate	fer from	the prescri	scribed j	protocol para		Parame	eters			7	
Ó			а	b	с	d	0	t	9	h	1	j.	k 🦷	- N
Phantom QA Acquisition Protocol		Study	Pulse Sequence	TR (ms)	TE (ms)	FOV (cm)	Number of Slices	Slice Thickness (mm)	Slice Gap (mm)	NEX	Ma	ıtrix	Routine Receive Band- Width (kHz)	Scan Time (min:sec)
Ξ.	8.	ACR Sagittal	Spin Echo	200	20	25	1	20	N/A	1	256	256		0:56
<u>0</u>	8.	locator	Echo						N/A					
rcqu	9.	ACR Axial T1	Spin Echo	500	20	25	11	5	5	1	256	256		2:16
A A	10.	ACR Axial T2 Double-echo	Spin Echo	2000	20/80	25	11	5	5	1	256	256		8:56
О Ш	11.	Your Site's Axial T1 weighted Brain Scan				Freq: Phase:	11	5	5					
nanto	12.	Your Site's Axial T2 weighted Brain Scan				Freq: Phase:	11	5	5					
ANNE E	14. Sc	an Options Use an Options Use real number of a	d on "Your S	Site's A	cial T1-			_						

INT		Part B:
ACCI C		Examinations and Procedures
about	S	ection 1B: Instrumentation and Equipment
STA	NDARD -	Instrumentation
ing s 1.1B	FDA appr	roved MRI device(s) must be available.
Sta felim redi	1.1.1B	The MRI unit must be capable of performing multiplanar images using T1, T2 and STIR sequences with a field of view large enough to consistently image all relevant anatomy in the region of interest.
aa st	1.1.2B	Equipment specifications and performance must meet all state, federal and local requirement
		(See Guidelines on Page 22 for further recommendations.)
	NDARD -	Equipment Quality Control
1.2B		pment Quality Control (QC) documentation must consist of MRI system installation acceptanc d acceptance testing following a major upgrade.
roi	1.2.1B	The manufacturer's representative, service engineer, or the MRI site-appointed medical physicist, or qualified expert must perform the acceptance testing.
	1,2.2B	The system parameters must be compared to the manufacturer's system specifications or industry standards and reviewed by appropriate staff. Acceptance testing must include (when applicable to the scanner):
il Ning H21		1.2.2.1B magnetic field homogeneity;
		1.2.2.2B gradient and RF calibration;

Magnetic Resonance Imaging #00557-04 Mayo Clinic Hospital

ACR MR Accreditation – Clinical Modules

Examination choices for MR Accreditation by module (specialty examinations denoted by asterisk*)								
Head/Neck	Spine	MSK						
Prain for transient ischemic attack (TIA) Internal auditory canal (IAC/Remporal bone) for hearing loss Brain for suspected demyelinating disease* Pituitary with dynamic contrast enhancement* Orbits for vision loss*	Lumbar Spine Thoracic Spine Cervical Spine* Cervical Spine with contrast for intramedullary disease*	Knee such as for internal derangement Shoulder such as for internal derangement Wrist such as for internal derangement* • Elbow such as for internal derangement* • Forefoot for Morton's neuroma*						
Body	MRA	Cardiac						
Male pelvis such as for prostate cancer Renal Hepatobiliary to Include MRCP*	Brain Carotid Thoracic aorta Distal peripheral runoff	Black blood Basic Delayed enhanced cine 1 Delayed enhanced cine 2						
 Female pelvis such as for uterine or adnexal disease* 	 High resolution arch and carotid* Abdomen for renal artery stenosis * 	Delayed enhanced cine + black blood*						

ACR Cervical Spine Requirements

Studi do titve non-avatoric betrogreense signal intensity Studi do titve non-avatoric betrogreenses signal intensity Studi content providence ho be contineve nota so that Studi content for a sintensity defect Studi content for a sintensity Thul Rull Raidensity and the sintensity and the sint	igh the In plane pixel (read) ≤ 1.0 mm In plane pixel (phase) ≤ 1.0 mm
 Should not have non-anatomic heterogeneous signal intensity 	Pixel area ≤ 1.0 mm ²
Sagittal bright CSF must be hyperintense to the cordinerve roots so that cover foramer mag. Must cover laterally throu roots so that it masks the fathruscle plane. Fat must not be so intense that it masks the fathruscle plane. Must show good contrast between the cord and CSF.	
	m C3 to T1. In plane pixel (read) ≤ 1.0 mm In plane pixel (read) ≤ 1.0 mm In plane pixel (phase) ≤ 1.0 mm Pixel area ≤ 1.0 mm ²

ACR Cervical Spine Datasheet

	CLINICAL T	IST IMAGE DATA	HEET (CERVICA	L SPINE)
1. Scanner Serial number:		45327		
2. Manufacturer:		Siemens		
3. Model name:		MAGNETOM	SKYRA 3T	
4. Year manufactured:		2012		
Type of exam:		Cervical Spin	e	
Date of exam:		06/04/2013		
Reason for exam:		Pain Neck		
Age of patient:		53		
Approximate weight of patient, if appli	cable (kg):	77.0		
Parameter	Sagittal dark fluid	Sagittal bright fluid	Axial bright fluid]
Sequence name/type	T1 TSE	T2 TSER	T2 TSER	1
Sequence #	3	2	5	1
Orientation	Sagital	Sagital	Axial	ĺ .
Sice thickness (mm)	3.0	3.0	3.0	1
Gap (mm)	0.45	0.45	0.00	
FOVp (mm)	200.0	200.0	160.0	1
FOVI (mm)	200.0	200.0	150.0	1
Np (acquisition phase matrix)	320.0	384.0	256.0	П
Nf (acquisition frequency matrix)	256.0	298.0	192.0	1
Np (reconstruction phase matrix)	320.0	384.0	256.0	1
Nf (reconstruction frequency matrix)	320.0	384.0	256.0	1
Np (display phase matrix)	320.0	384.0	256.0	1
Nf (display frequency matrix)	320.0	384.0	256.0	1
# Acquisitions	2.000	2.000	2.000	Г
TR (ms)	500.0000	4070.0000	6520.0000]
TE (ms)	9.7	108	84]
Flip Angle	140	160	160	
п	0	0	0	

MANR T

Physicist QC Check - ACR Cervical Spine

Accesssion: FAILED

	Sagittal dark fluid	Sagittal bright fluid	Axial bright fluid
Slice thickness (≤ 3.0 mm)	Pass	Pass	Pass
Gap (≤ 1.0 mm)	Pass	Fail	Pass
In plane pixel(read) (≤ 1.0 mm)	Pass	Pass	Pass
In plane pixel(phase) (≤ 1.0 mm)	Pass	Pass	Fail
Pixel area (≤ 1.0 mm2)	Fail	Pass	Pass

MANIC T

	Delayed Enhanced Cine with Black Blood*											
nced	Required Sequences	Category A: Pulse Sequence and Image Contrast	Catagory C: Anatomic coverage and imaging planes Failure to meet these specifications will result in failure.	Category D: Spatial Resolution								
Cardiac Delayed Enhanced	BLACK BLOOD - Axial	Nucle to grand to the cardiac cycle Nucle to grand to the cardiac cycle Nucle to see to grand the set of the	Must cover from eortic root to diaphragm (axial)	Silce thickness \$ 8.0 mm Gap 1 4 mm In plane pixel (read) \$ 1.6 mm In plane pixel (phase) \$ 2.6 mm Pixel area \$ 4.0 mm								
elayed	SHORT AXIS CINE	acceptation accept	Must cover entire left ventricle from base to apex	Sice thickness 5.8.0 mm In plane pixel (read) 5.1.8 mm In plane pixel (phase) 5.2.5 mm Pixel area 54.0 mm ² Temporal resolution 380 msc (without view sharing)								
ac De	LONG AXIS CINE 2 Chamber	Nut to epikel to the cardiac cycle Nut have no significant antifyminia during the NRI cardiac cycle Neal time criek images are not acceptable Nut have no significant and the strain (including good blood suppression) Nut image and systelle and distance	Single slice oriented verticely through the middle portion of the left atrium and the middle portion of the left ventricle	Sice thickness ± 8.0 mm In plane pixel (read) ± 1.6 mm In plane pixel (phase) ± 2.5 mm Pixel area ± 4.0 mm ² Temporal 4eoUtion s80 msec (without view sharing)								
Cardia	LONG AXIS CINE 4 Chamber	Nucl to epidet to the cardiac cycle Nucl to epidet to the cardiac cycle Nucl twe no epidemetaria mityminia during the NRU cardiac cycle Neal time crief images are not acceptable Nucl time, crief is spolic cycle Nucl times are spo	Single slice oriented vertically through the middle portion of the left atrium and the middle portion of the left ventricle	Sice thickness \$ 8.0 mm In plane pixel (read) \$ 1.6 mm In plane pixel (phase) \$ 2.5 mm Pixel area \$ 4.0 mm ² Temporal resolution \$80 msec (vithout view sharing)								
ACR 0	LONG AXIS CINE Aortic Outflow Tract	 most organes to the science science Must have no exploring a random during the MRI cardiac cycle Real time che image a random carceptable Must have no explorestion discrimination (including good blood suppression) Must image and systele and calcastase Standy State free procession technique is preferred, but tast gradient echo is allowed 	Single slice oriented vertically through the middle portion of the left atrium and the middle portion of the left ventricle	Sice thickness s 8.0 mm in plane pixel (read) ± 1.6 mm in plane pixel (phase) ± 2.5 mm Pixel area ± 4.0 mm ⁵ Temporal resolution ±80 msec (+thout view sharing)								
	DELAYED GADOLINIUM ENHANCED	Must be applied to the cardiac cycle Must be applied to the cardiac cycle Must be in the short axis pane in patients with prior myccardial (Matton Must be in the short axis pane in patients with prior myccardial (Matton Must be applied applied applied and by patients) Must be applied and and by patients Must be applied and and applied applied and applied applied and applied	Must cover entire left ventricle from base to apex in the short axis	Sice thickness \pm 10.0 mm Gap \pm 2.0 mm In plane pixel (read) \pm 1.9 mm In plane pixel (phase) \pm 3.1 mm Pixel area \pm 5.9 mm ²								

CUN	CAL TEST MADE	DATASHEET (DEL	AYED ENHANCED	O CINE WITH BLA	CK BLOODI	
1. Scanner Serial number.			45327			
2. Manufacturer:			Siemens			
3. Model name			MAGNETOP	A SKYRA ST		
4. Year manufactured. Type of exam:			2012	vanced Cine With B	and filment	
Date of exam			06/16/2013	sances cine was a	NACK DROOD	
Reason for exam				N, CARDIOMYOF	ATTAX NOT	
Age of patient			31			
Approximate weight of patient,	d applicable duri:		56.D			
Additional and a second	Short Axis Cine	Long Asis Cine 2 Chamber	Long Axis Cine 4 Chamber	Long Axis Cine Aortic Outflow Tract	Delayed Gadolinium enhanced	Black Blood Sequence
Sequence name/type	SHORT AXIS STACK TRI2D	2CH TFI2D	4CH SS TFI2D	AO LOC TFI2D	TI SAK DELAYS FL	DIR DB TSE
tioquence #	34	31	32	67	86	7
Constation Orientation	Oblique	Otéque	Ctéque	Ctéque	Oteque	Axial
Slice thickness (mm)	5.0	5.0	5.0	5.0	8.0	5.0
Gap (mm)	0.00	0.00	0.00	0.00	1.60	0.00
FO(p.(mn)	270.0	312:0	297.0	312.0	350.0	276.0
FOVT (mm)	340.0	340.0	340.0	340.0	350.0	340.0
Np (acquisition phase matter)	134.0	154.0	157.0	154.0	154.0	208.0
M (acquisition trequency matrix)	224.0	224.0	224.0	224.0	256.0	256.0
Np (reconstruction phase multix)	178.0	206.0	196.0	206.0	256.0	208.0
M (reconstruction frequency matrix)	224.0	224.0	224.0	224.0	256.0	256.0
Np (display phase matrix)	128.0	206.0	196.0	206.0	256.0	206.0
NF(display frequency matrix)	224.0	224.0	224.0	224.0	256.0	256.0
Acquisitors	1.000	1.000	1.000	1.000	1.000	1.000
TR (ms)	29.6800	23.6600	29.6800	23.6600	500.0000	954,0000
TE (115)	1.8	1.5	1.8	2.0	1.6	24
Flip Angle	n	58	76	58	20	180
NO 11	0	0	0	0	270	a
INIC Temporal resolution (ms)	30	24	30	24	500	
#Views per Segment	7	7	7	7	41	

Low SAR Protocol Development

- Growing need for low SAR sequences
 - Patients with reduced

MANR CP

- thermoregulator capacity
- Cardiac impairment; hypertension; diabetes; obesity; fever
- Pregnancy (risk for fetal heating)Unconscious, sedated, locally
- anesthetized
- Patients with implanted devices
 - Stents, retained leads, wires
 - Neurostimulators: DBS (0.1W/kg), VNS
 - Cardiac Devices: Pacemakers, ICDs, CRT-Ds

	nal Approvals: 2015 vs 2016
2015	2016
 Pacemakers 	Pacemakers
 Medtronic Revo 	 Boston Scientific Accolade
 Medtronic Advisa 	 Boston Scientific Essentio
 Biotronik Entovis 	 Medtronic Micra Pacemaker
 Biotronik Eluna 	• ICDs
ICDs	 Boston Scientific Emblem
 Medtronic Evera 	 Biotronik Iperia 7 VR-T DX
	 Biotronik Inventra VR-T DX
	 Biotronik Iforia DR-T / VR-T DX
	 Medtronic Visia AF
	CRT-Ds
	 Biotronik Iperia HF-T
	 Biotronik Inventra HF-T
	 Medtronic Amplia Quad
ic J	 Medtronic Compia Quad

	SUPERSAR TECHNOLO	pdated Form on: 4		monitoring Sheet	
Date:					
SuperSAR Techn	ningist				
Scanning MR Tec					
PACEMAKER/I					
Is this a Pacemak					
Is this an MR-Con				Tes/No	
	at MR Compatible Mode; eg: SureScan?			Yez/No	
If MR Conditional	ICD, is ICD turned OFF?			Yes/No	
MR CC	NDITIONAL Pacemaker/ICD Info:			NDITIONAL Lead Info:	
	MR CONDITIONAL Pacemaker/iCD Into:		rial Lead		ular Lead
Manufacturer:		Manufacturer:		Manufacturer:	
Model/Serial		Model/Serial		Model/Serial	
Implantation Date:		Implantation Date:		Implantation Date:	
MR Conditional:		MR Conditional:		MR Conditional:	
SCANNER and	PROTOCOL DETAILS				
MR scanner:		М	CH-MR1		
MR region scanne	id:				
Coil used:					
Pacemaker protor	ol used:				
	aker Protocols; if no protocol present please				
	I physicist before proceeding)				
Scan performed or				Yes/No	
SAR Reduction				General Notes:	
STEP 1	Increase TR				
STEP 2	Decrease flip angle				
STEP 3	Decrease # of slices (for 2D scans)				
STEP 4	Reduce echo-train-length for FSE				
STEP 5	If the strategies don't work, contact on-call	Physicist			
If Physicist				Yes/No;	
Contacted				Physicist name	
PHYSICIST SE					
Final physicist	Name		Date		
approval					

SAR Reduction Strategies • Set RF Type to "Low SAR", "Normal Mode" • Decrease # of slices (for 2D scans) • Decrease # of averages · Eliminate SAT bands and Fat Sat Increase TR Decrease flip angle • Reduce echo-train-length for FSE/TSE Gradient echo scans provide less SAR than spin echo Spin echo scans provide less SAR than fast (turbo) spin echo

Inhomogeneous Field - Fat Suppression

MRI Artifacts - Protocol Optimization

• Ghosting (Motion)

MANR T

- Susceptibility (Metal)
- Gibbs Ringing (Truncation)
- Wrap-around (Aliasing)
- Inhomogeneous B₀ or B₁ field

Chemically selective saturation SPectral Attenuated Inversion (CHESS)

Recovery (SPAIR)

Fat Suppression Techniques						
Name of Technique	Method	Time Penalty	SAR	Sens. To B _o	Sens. to B ₁	Comments
CHESS/ Fat-Sat	Chemical Shift	Small	Med	High	High	Most popular & versatile technique; works best at high fields (1.5T-3.0T); cannot use at fields <0.3T; poor or incomplete suppression near metal
Dixon	Chemical Shift	Large	Low	Low	Low	2 pt. & 3+ pt. methods; generate 4 images in one acquisition (in-phase, out-of-phase, water only, and fat only); commercial implementations: GE (IDEAL, Flex), Siemens (Dixon), Philips (mDixon), Hitachi (FatSep), Toshiba (WFOP)
Water excitation	Chemical Shift	Small	Low	High	Low	Binomial pulses (1-1, 1-2-1, 1-3-3-1); most widely used in MSX; good method for midfield (0.3-1.07); commercial implementations: GE (SSRF), Siemens (WE), Philips (ProSet), Toshiba (PASTA, WET)
STIR	Τ1	Large	High	Low	Low	Widely used; works at all field strengths; tolerant of B_0 and B_1 inhomogeneities; nonspecific suppression of all short T1 materials (fat, protein, blood); cannot use post-Gad; images are T2-weighted
SPIR	Hybrid	Med	Med	High	High	Combination of CHESS+STIR: spectrally selective RF pulse inverts fat only, signal generated after TI delay. Images retain TI-weighting and can be used post Gad; cannot use at low fields (<0.3TJ or poorly shimmed magnets; commercial implementations: GE (SPECIAL, SSRF), Philips (SPR)
SPAIR mri-q.com – D	Hybird r. Elster	Large	High	High	Low	Same as SPIR but uses adiabatic inverting pulse that minimizes sensitivity to B_1 nonuniformity; useful in abdominal breath-hold studies

MRI Artifacts - Protocol Optimization

- Ghosting (Motion)
- Susceptibility (Metal)
- Gibbs Ringing (Truncation)
- Wrap-around (Aliasing)
- Inhomogeneous B_0 or B_1 field

TINK T

Protocol inconsistencies
Image quality (SE vs FSE) Missing images (sequences per protocol) Hanging protocol mismatch on PACS (sequence order)
rkflow inefficiencies - Technologists
Identifying right protocol Indication, coil, and specialty protocols On-the-fly changes
rkflow inefficiencies - Radiologists
Protocols hanging on PACS Indication based protocoling Interruptions with missed images

	Dot Cockpit - Explorer		
		CLINICAL > 10HEAD > 0BRN 20CH	* 010RTN 1
		✓ A4HSkout 09C100010 SAG T1 FLAR 09C100010 え ▶ AX DIFF RESOLVE 09C100010 え ▶ STROKE え no	
MANE	060TLV 30CH 070FL 30CH 080F0ST F0SSA 20CH 100MF0ET F0SSA 20CH 100MF0 HEAD 100HA 130MF0 HEAD 20CH 130MF0 HEAD 20CH 140TEMP ARTERY 20CH • 66FH TR COL 06FH 64CH	COR DIFF RESOLVE 09A100010 糸 ト AX 12 TSE IR 09C100010 糸 ト AX 125TR SWI 09C100010 糸 ト MPR Planning	STROKE yes 0201/0103 4xx3

				<u> </u>		100BRN 010RTN 64CH 100BRN 012FST RTN 200 100BRN 012FST RTN 64C 100BRN 013MOTION RTN	н
_			т	AG	DIOCOL NAME		
PECIALTY	SECTION	SUB SECTION	BODY PART		CLINICAL PROTOCOLS	TECHNIQUE (section specific)	COILS
	NEURO	0 HEAD	0 DRN		ONE RIN, REZ PAST RIN, GIS MOTION RIN, GIS METS, SIG ANTV. 649 MS, GIS MOTION RIN, DIS MOTI SIGNAL, GIS TU, JOH DF, JOH DYN HIT, DIS MOTI TOXIS, GIS TIN LIFENE, DIS MIRA HEAD, 119 MIRA ANELIKYSM COL, 120 MIRY HEAD, 139 MIRA ANELIKYSM COL, 120 MIRY STICKE FEBER, HOCK, MOTIONE ARTY ONE TIS CONCUSSION, DIS CISP FLOW, DIS STICKE FEBER, OLG TUMOR THEORY, DIS FEBE STICKE, TO STICK, DIS STEALT, HI VISUALASE: 120 GRD PLACEMENT, 130 VISUALASE: 120 GRD PLACEMENT, 130 VISUALASE: 120 GRD PLACEMENT, 130	0 NONE, 1 METAL, 2 FAST, 3 MOTION	BCH, HNS, TR COL, I 200H, 640H, BCH, HNS, TR COL, I
YEDS			9 DRN		999 GEN SEQ	0 NONE, 1 METAL, 2 FAST, 3 MOTION 0 NONE, 1 METAL, 2 FAST, 3 MOTION	BCH, HNS, TR COIL, 29CH, 64CH.
	NEURO	1 FACE NECK	0 FACE NECK 1 ORBITS 2 PAROTIO 3 SIALOGRAM		019 RTN, 030 THERAPY PLAN 019 RTN 019 RTN 019 RTN		8CH, HNS, TR COL, 1 20CH, 64CH, HNS, NVB, 20CH, 64C 20CH, 64CH

NEURO	MSK	BODY
92	64	126
100BRN 010RTN 20CH	200SHOULDER 010RTN	300LIVER MRCP 010RTN
100BRN 010RTN 64CH	200SHOULDER 010RTN BODY18	300LIVER MRCP 011MED BH
100BRN 012FST RTN 20CH	200SHOULDER 011METAL RTN	300LIVER MRCP 012SHORT BH
100BRN 012FST RTN 64CH	200SHOULDER 012FAST RTN	300LIVER MRCP 013RTR
100BRN 013MOTION RTN 20CH	200SHOULDER 013MOTION RTN	300LIVER MRCP 014LARGE FOV
100BRN 013MOTION RTN 64CH	200SHOULDER 020ARTHRO	300LIVER MRCP AB 010RTN
100BRN 020METS 20CH	201ELBOW 010RTN KNEE COIL	300LIVER MRCP AB 011MED BH
100BRN 020METS 64CH	201ELBOW 010RTN LG FLEX	300LIVER MRCP AB 012SHORT BH
100BRN 030ATW 20CH	201ELBOW 011METAL RTN KNEE COIL	300LIVER MRCP AB 014LARGE FOV
100BRN 030ATW 64CH	201ELBOW 011METAL RTN LG FLEX	301LIVER 010EOVIST
100BRN 040MS 20CH	201ELBOW 020ARTHRO KNEE COIL	301LIVER 020STRICTURE
100BRN 040MS 64CH	201ELBOW SUPINE 010RTN LG FLEX	301LIVER 030SPHINCTER OF ODDI
100BRN 050IAC FULL 20CH	201ELBOW SUPINE 011METAL RTN LG FLEX	301LIVER 040PERF
100BRN 050IAC FULL 64CH	202WRIST 010RTN	301LIVER 060HEMOCHROMATOSIS
100BRN 050IAC LTD 20CH	202WRIST 010RTN SM FLEX	302LIVER MRCP LTD PEL 010RTN
100BRN 050IAC LTD 64CH	202WRIST 011METAL RTN	302LIVER MRCP LTD PEL AB 010RT
100BRN 060TLV 20CH	202WRIST 011METAL RTN SM FLEX	310ENTERO AB 010RTN
100BRN 060TLV 64CH	202WRIST 020ARTHRO	311APPENDIX 010RTN
100BRN 070DYN PIT 20CH	202WRIST SUPINE 010RTN	312LYMPHANGIOGRAM 010RTN
100BRN 070DYN PIT 64CH	202WRIST SUPINE 010RTN SM FLEX	320KIDNEY 010RTN
100BRN 070PIT 20CH	202WRIST SUPINE 011METAL RTN	321ADRENAL 010RTN
100BRN 070PIT 64CH	202WRIST SUPINE 011METAL RTN SM FLEX	322UROGRAM 010RTN
100BRN 080POST FOSSA 20CH	210HUMERUS 010RTN	322UROGRAM 020NO GAD

Scanner Use Time/Charge Per Division 120 Exam Time (mins) 90 60 30 0 2015-07 2015-08 2015-09 2015-12 2016-02 2016-04 2016-05 2016-06 2 2015-11 2016-01 2016-03 2015-- BODY 🔶 BREAST 🛛 🔶 CARDIAC 🔶 MSK + NEURO CINK CPD

MRI	Protocol Review
Level 1	Required for accreditation under mandatory physicist supervision
Level 2	Structured, needed for accreditation, medical physicists involvement not required
Level 3	Neither well defined nor mandated, primarily research and clinical development activities
Level 3+	Beyond clinical Operations Analytics: Consistency, Efficiency
Medical physicist exp	pertise beyond technical compliance

Medical physicist expertise beyond technical compliance to direct patient care and clinical operations \$\$

