

The James

LEARNING OBJECTIVES

- •
- What is the difference between tomosynthesis guided breast biopsy compared with 2D stereotactic guided biopsy
- When and how do we decide which patients receive tomosynthesis guided biopsy compared to 2D stereotactic biopsy
- Advantages and disadvantages to tomosynthesis guided biopsy
- What advantages does the new prone tomosynthesis/2D table provide
- · What is the medical physicists role with this modality

DISCLOSURES

· I have no disclosures to report

HISTORY OF TOMOSYNTHESIS

- Basic theoretical framework was provided by Ziedses des Plantes in the 1930's
- In 1972 Grant coined the term 'tomosynthesis' in a landmark paper that described simple tomosynthesis reconstruction
- In the 1970-1980's a number of variants of tomosynthesis were developed (i.e. ectomography and flash tomography)
- With the advent of spiral CT in the 1980's tomosynthesis research halted
- In the 1990's research using tomosynthesis for chest and breast imaging began

Medical Physics Vol. 36, No. 6, June 2009

HISTORY OF TOMOSYNTHESIS

- 1992 Christian, Niklason, LT, Niklason, LE and Kopans started looking at digital breast tomosynthesis (DBT) for breast imaging
- 2000 in collaboration with GE Healthcare the first studies were performed using DBT and a patent was granted
- 2011 FDA approved Hologic Selenia Dimensions 3D system for breast tomosynthesis
- 2013 FDA approved Hologic C-view imaging software for use with DBT to reconstruct 2-D images and Hologic Affirm Breast Biopsy Guidance System

Medical Physics Vol. 36, No. 6, June 2009

TOMOSYNTHESIS

- DBT is a 3D method of imaging that reduces tissue overlap seen in regular 2D mammography
- · It is a form of limited-angle tomography
- Low-dose full field projection images of the breast are obtained from different angles with x-rays passing through the breast from different directions
- Reconstruction produces many 1 mm image slices

AJR2014; 202:299-308

TOMOSYNTHESIS

- In the screening patient, both the craniocaudal (CC) and mediolateral oblique (MLO) projections are acquired; however, additional projections may be obtained if warranted.
- The x-ray source moves in a single plane in an arc around the imaged breast.
- These projection images are then reconstructed into 1-mm-thick images for review. Filtered back projection (FBP) is the most commonly used method for reconstruction,

TOMOSYNTHESIS

Manufacturer	Hologic	GE Healthcare	Siemens Healthcare
Model	Selenia Dimensions	SenoClaire	Mammomat Inspiration
Scanning angle (°)	15	25	50
Projections	15	9	25
Scanning time (s)	4	7	24
Tube motion	Continuous	Step and shoot	Continuous ^a
Detector material	a-Se	a-Si/Csl	a-Se
Reconstruction	Filtered back projection	Iterative	Filtered back projection

AJR 2017; 208:256-266

TOMOSYNTHESIS

- Advantages to using DBT:
 - Decreases call back from screening.
 - Better for dense breast tissue.
 - Able to see architectural distortion and isodense masses better.
 - Helps distinguish skin lesions without the use of tangential views.
 - · Helps localize a lesion for ultrasound or biopsy.
 - Allows better visualization of mass margins so can go straight to ultrasound from screening call back.

TOMOSYNTHESIS

- Disadvantages to using DBT:
 - Longer scan time than 2D mammogram.
 - Increase radiation dose compared with 2D.
 - Not yet covered by all insurance companies.
 - Takes longer time to read.

TOMOSYNTHESIS VS. STEROTACTIC GUIDED BIOPSY – LESIONS BEST VISUALIZED

Tomo Guided Biopsy

Stereotactic Guided Biopsy

Calcifications

- Architectural Distortion
- Isodense or low density lesions.
- Single view findings.

TOMOSYNTHESIS VS. STEROTACTIC GUIDED BIOPSY - ADVANTAGES

Tomo Guided Biopsy

- Can be done upright or prone position if you have both available.
- Larger field of view 18 x 24 cm.
- Shorter biopsy times (13 vs 29 minutes).
 3D imaging for better and more accurate targeting.
- Biopsy equipment is easily installed and removed from a mammogram machine.
- Less exposures needed.
- Patients who are over the weight limit for the prone table.
- Better ability to make adjustments due to better visualization of the lesion and trough and needle tip.

Stereotactic Guided Biopsy

- Can be done upright or prone position if you have both available.
 If patient does not want to see the needle norne positioning allows for
- needle prone positioning allows for them not to. Better to see calcifications.
- Less vasovagal episodes.

TOMOSYNTHESIS VS. STEROTACTIC GUIDED BIOPSY – LIMITATIONS

•

Tomo Guided Biopsy

- Vasovagal episodes.
- If only have upright biopsy system more difficult to reach very posterior lesions.
- A mammogram machine is need so won't be able to do mammograms on it when biopsy is occuring.
- Stereotactic Guided Biopsy
- Difficult to accurately biopsy distortions, isodense masses and one view findings.
- Smaller FOV.
- Longer time for biopsy.
 - In only have prone table cannot biopsy patients over weight limit or those who cannot lie on their stomach.
- Posterior lesion accessibility

TOMOSYNTHESIS GUIDED BIOPSY

- Use a 7G 11G vacuum biopsy needle.
- Comes in standard size (20 mm trough), petite (12 mm trough) and Non-firing (12 mm trough).
- Tomosynthesis guidance helps over come technical challenges previously seen in stereotactic biopsy:
 - Superficial lesion
 - Deep or very superior lesion

TOMOSYNTHESIS GUIDED BIOPSY

TOMOSYNTHESIS GUIDED BIOPSY

TOMOSYNTHESIS GUIDED BIOPSY

• The TVAB system is mounted onto the mammogram equipment's C-arm and locked into place.

TOMOSYNTHESIS GUIDED BIOPSY

 After consent is given and a time out is performed the patient is positioned and a scout tomosynthesis view is performed to acquire the target.

TOMOSYNTHESIS GUIDED BIOPSY

The target is marked and the coordinates are sent to the TVAB system.

TOMOSYNTHESIS GUIDED BIOPSY

• The needle is then attached to the system and the needle is homed and then targeted to the appropriate coordinates.

	T	Target Guidance			
	Target:	1 of 1 X(mm)	Y(mm)	Z(mm)	
	Current:	2.8	37.7	45.8	
	Target:	2.8	34.4	27.0	
€	Diff:	0.0	3.3	18.8	
		REAL	YC		
5-	Eviva Sta	andard 9 lety Marg	gx13cm, ins (mm)	20mm	
	x 32.2	Y 28.9	ZZ	28.5	

TOMOSYNTHESIS GUIDED BIOPSY

 The patient's skin is cleaned and lidocaine is injected into the skin and subcutaneous tissues. Then the needle is advanced along the z-axis to the appropriate depth.

Target Guldance			
Target:	1 of 1 X(mm)	Y(mm)	Z(mm)
Current	2.8	34.4	27.0
Target	2.8	34.4	27.0
Diff	0.0	0.0	0.0
	REAL	DY	
Eviva St Sa	andard 9 fety Marg	gx13cm, ins (mm)	20mm
x 32.2	Y 28.9	Z	9.7

TOMOSYNTHESIS GUIDED BIOPSY

 A second set of tomosynthesis images is preformed to ensure accurate targeting.

TOMOSYNTHESIS GUIDED BIOPSY

Biopsy is then performed taking 6-12 cores and a clip is then

TOMOSYNTHESIS GUIDED BIOPSY

 A tomosynthesis is acquired to ensure clip deployment and appropriate placement.

TOMOSYNTHESIS GUIDED BIOPSY

• Pressure is held for 10 minutes to stop bleeding and a post biopsy 2D CC and ML mammogram is performed.

NEW PRONE 2D/3D TABLE

- Enables biopsy of lesions only visible with tomosynthesis.
- Amorphous Selenium Detector (same detector technology as the upright).
- X-ray translucent paddles for better visualization of breast tissue surrounding biopsy window.
- 6.5 times larger FOV 14.3 cm X 11.7 cm.
- Fast one-click targeting.
- True 360 degree access Lateral arm (no need to take patient out of compression moving from standard approach to lateral approach).
- Clear paddles (easier to see landmarks).

CASES

REFERENCES

- Tomosynthesis Imaging: At a Translational Crossroads. Medical Physics Vol. 36, No. 6, June 2009.
 Digital Breast Tomomsynthesus From Concept to Clinical Care. AJR2014; 202:299-308.
 Advances in Digital Breast Tomosynthesis. AJR. 2017; 208:256-266
 Basics of Digital Breast Tomosynthesis. Applied Radidlogy. March 2014; 17-20.
 Tomosynthesis-guided vacuum-assisted breast biopsy: A feasibility study. European Radiology. 2016.
 26:1582-1589.
- Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test. Physics in Medicine & Biology. 2015. 60.3939-3958. Effects on short-term quality of life of vacuum-assisted breast biopsy: comparison between digital breast tomosynthesis and digital mamography. BRJ. 2015. 6933.

- Digital Breast Tomosynthesis-guided Vacuum-assisted Breast Biopsy: Initial Experiences and Comparison with Prons Stereotactic Vacuum-assisted Biopsy, Radiology. 3/2015. Vol. 274: Number 3. Tomosynthesis: detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation. Radiographics. 2016;36:311-321.