

Therapy (SAM) Symposium AAPM Spring Clinical Meeting Saturday March 18, 2017

Physics Audience: Good Joke?

 Rene Descartes is sitting at a bar. The bartender asks him: "Would you like another drink?"
 Descartes replies: "I don't think ..." and *poof* he disappears!

Building a New Radiation Therapy Clinic: Wait, Where Do I Start? - Part II

No Conflicts of Interest.

Any mention made of commercial products, consultants, and vendors is intended only as an example, and because of our familiarity with them.

DISCLAIMER

Building a New Radiation Therapy Clinic: Where Do I Start? Part II

PERSPECTIVE AND RATIONALE

Building a New Radiation Therapy Clinic: Where Do I Start – Part II

The New Radiation Therapy Clinic

- By identifying the key elements of a new radiation-therapy clinic, we also identify the key components of what we believe should constitute a quality program
- This presentation summarizes <u>the University of</u> <u>Maryland Department of Radiation Oncology</u> <u>experience</u>, and it describes the **leadership** role that we must undertake as clinical medical physicists

The Medical Physicist

- Google "The Medical Physicist"
 - Science
 - Math
 - Engineering
 - Computers
 - Technology
 - But ... Leadership?

Our Traditional Role

Calculations

Measurements

Physics

External Beam

Brachytherapy

A12,A1,PR05,PR05P,IC-5,IC-10 0.99 PTW N30002 0.98 PR06C 0.97 NE2561 PTW N30001,31003 0.96 NE2571, 2577 2505/3A, 30004

Applied Research

Our Expanded Role

Team Collaboration

Planning Oversight

Compliance

Regulatory

The Patient!

The Medical Physicist

- Quotes from Medical Physics Scope of Practice
 - "This document summarizes the tasks for which medical physicists are <u>uniquely</u> <u>qualified</u>."
 - "The <u>essential responsibility</u> of the Qualified Medical Physicist's clinical practice is to <u>assure</u> the safe and effective delivery of radiation to achieve a diagnostic or therapeutic result as prescribed in patient care."
 - A key member of institutional staff and a vital member of the patient-care team

The Medical Physicist as Clinical Leader

- Problem-solving skills
 - Apply the scientific method
- Understand the technology
 - What it can and cannot accomplish
- Appreciate the clinical perspective
- Medical Physics Practice:
 "Reasonable and Prudent" *
 - * Shalek and Gooden: Medical Physicists and Malpractice Med Phys Publishing 1996

Building a New Radiation Therapy Clinic: Where Do I Start? Part II

THE UNIVERSITY OF MARYLAND EXPERIENCE

The University of Maryland Department of Radiation Oncology

University of Maryland Department of Radiation Oncology: Perspective

- Six practice sites over five counties in Central Maryland
 - 11 accelerators
 - 4 proton gantries, 1 fixed
 - Gamma Knife / Gamma Pod / Hyperthermia
 - 2 HDR; LDR @ most sites
- Currently, roughly 250 or so patients treated daily
- Approximately 70 faculty members (clinical, physics, radiation biology) and over 200 staff

- Integrated practice
 - Standardized practice
 - Clinical Practice Guidelines
 - Consolidated staffing
- Centralized operational management
 - Operational / advisory committees
 - Quality management
- Integrated IT Infrastructure
 - Single databases

Building a New Radiation Therapy Clinic: Where Do I Start? Part II

OVERVIEW AND INTRODUCTION

Building a New Radiation Therapy Clinic: Overview

- Introduction
 - Assumptions, needs, goals
- Project Management and Design
 - Concepts, phases, team members
 - Facility, equipment, staffing
- Clinical Program Implementation
 - Operations, quality management
- Closing
 - Lessons learned

Opening a Radiation Therapy Clinic – Intro

- Assumptions Feasibility Exists
 - What this presentation will and will not cover
- We will assume:
 - Clinical need exists
 - Patient population
 - Necessary partnerships have been formed
 - Patient referral, physician groups
 - Area hospitals
 - Financial viability properly evaluated
 - Projected revenue versus costs capital / operations

Opening a Radiation Therapy Clinic – Intro

- Assumptions <u>Clinical Requirements Identified</u>
 - Disease Sites / Needed Services
 - Breast, prostate, lung, head and neck, CNS, GI, Gyn, etc.
 - External beam
 - Conventional, IMRT, SBRT, IGRT
 - Brachytherapy
 - HDR, LDR
 - Other special procedures ...
 - TBI, Intracranial SRS, etc.

Opening a Radiation Therapy Clinic – Intro

- Assumptions A "Stand-alone facility" ...
 - Fully staffed, self-sufficient
 - Linear accelerator(s)
 - State-of-the-art
 - IMRT, SBRT, VMAT, IGRT
 - Surface imaging, fiducial markers / beacons
 - Brachytherapy: LDR / HDR
 - In-house CT Multi-slice, 4DCT
 - Planning and record-and-verify systems

Staffing

- Radiation oncologists, nursing staff, physicist(s), dosimetrist(s), therapists, administrative, reception, medical records staffs, ...
- Staffing models
 - Dependent upon patient numbers and practice complexity
 - Guidance: ACR, ASTRO, ASRT, etc.

References

- ASRT Radiation Therapy Staffing and Workplace Survey 2014
- ASTRO Safety is No Accident 2012
- Battista JJ et al. JACMP 13(1) 2012
- Klein EE JACMP 11(1) 2009

Introduction: Example Facility

UCHS KCC – Facility

- Clinic space
 - Nurses station, 8 exam rooms, 3 consult,
- Equipment
 - 2 accelerators Trilogy / TrueBeam
 - CT Philips Brilliance
 - HDR Brachytherapy -Elekta Flexitron
 - Planning systems -RayStation / Eclipse

UCHS KCC – Staffing

- Staffing
 - 1 Ops Manager
 - 2 MDs
 - 3 Nurses
 - 2 Physicists
 - 2 Dosimetrists
 - 7 Therapists
 - 3 Front Desk
 - 1 IT
 - 1 Research Coordi.

Project Management – Principles / The Physicist as PM Building and Developing a Radiation Therapy Clinic

PROJECT MANAGEMENT AND PROJECT DESIGN

Project Management

- What is a Project?
 - It's a temporary group activity designed to produce a unique product, service or result
 - Project Management Institute Website: (http://www.pmi.org/ About-Us/About-Us-What-is-Project-Management.aspx)

From: Jarret Horst, Project Manager, UMMC

- What is a Project?
 - A project is **temporary**
 - Has a <u>defined beginning</u> <u>and end</u> in time, and therefore <u>defined scope</u>
 - A project is **unique**
 - A specific set of operations designed to accomplish <u>a</u> <u>singular goal</u>
 - Often includes people who don't usually work together

Project Management: Phases and Groups

Initiation

- <u>Define the need</u>, <u>identify stakeholders</u>, and <u>clearly</u> delineate deliverables
- Planning
 - <u>Organize</u> project components; create <u>list of tasks</u>, project schedule, and <u>assign</u> responsibilities

Execution

- <u>Begin work</u> on assigned tasks,
 <u>communicate</u>
- Monitoring and Controlling
 - <u>Continually review</u> <u>progress versus</u> <u>objectives</u>
- Closing

Project Management: Phases and Groups

http://staff.lib.uci.edu/departments/it/projects/docs/PrimeronProjectManagement.pdf

Project Management Forces

The Scope Triangle

- Competing forces
 - Increased project quality may require more time or resources; less time may result in less project quality
- "Scope Creep" <u>accumulation of new</u> <u>project functionality</u>
 - Increased time or resources

Project Management Communication

- The "Mythical Man Month"
 - Adding resources to a project does not necessarily speed it

Communication

- complexity
- Potential Scope Creep

http://www.nickjenkins.net/prose/projectPrimer.pdf

Project Example: RayStation Implementation

- Initial Project Plan
 - Contract
 - Specifications
 - Beam Data
 - Consolidate
 - Acceptance
 - Functionality
 - Commissioning
 - Clinical implementation
 - Training
 - Large physics and dosimetry groups

- What actually happened?
 - Contract OK
 - Small empowered group
 - Beam Data
 - Became a project itself
 - Acceptance OK
 - Essentially 2-3 people
 - Clinical Release
 - Initial goal, but delayed
 - Training
 - Overwhelmed project initially

Radiation Therapy Clinic Design and Development PROJECT DESIGN AND EXECUTION

The Project Team and Project Phases

Project Design and Execution

The Project Team

Project Team Brainstorming Session This Works!

The Project Manager

- The Project Team
 - The Clinical Team
 - Clinic Staff
 - Technical Staff
 - Administrative Team
 - Architects / Engineers
 - IT Staff
 - Principal Vendors

The (Physicist as) Project Manager

- Identifies project requirements
- Establishes clear objectives
- Directs the project from start to finish
 - Lead teams to ensure cross-functionality, continuity, and cohesiveness
- The Project Manager's roles include
 - Leader, Administrator, Facilitator, Arbitrator, Mediator, Liaison, Coordinator, Communicator

http://www.usbr.gov/excellence/Finals/FinalIntroPM.pdf

Effective Communication: The True "Final Frontier"

Let's digress ...

- The No. 1
 Challenge
 - Even <u>harder for</u> <u>physicists</u>
- However, extremely important
 - Understand the "Big Picture"

Effective Communication: Brevity

- But ... be brief
- Information Overload
 - Attention span 8 sec
 - Distraction at 15 min
 - Focus only 6 hrs/wk
- Common mistakes
 - Over explain
 - Under prepare
 - Miss the point completely

Steering Committee and Sub-Committees

Standing and Ad-Hoc Members

Project Team Organization

Steering Committee

- Leadership group
 - Senior administration
 - Medical direction
 - Section chiefs: Nursing, Physics, Therapy
- Project manager
- Sub-committee leadership

- Responsibilities
 - Project management
 - Receive subcommittee reports
 - Maintain project timeline
 - Maintain project documentation
 - Project liaison activities

Project Team Organization

Facilities / Engineering

- Senior administrator
- Facilities manager
- Construction foreman
- Vendor PMs
- Physics / clinic / therapy representatives

- Responsibilities
 - Architectural design
 - Construction
 - Physical plant
 - Electrical / Plumbing / HVAC / Etc.
 - Major-equipment vendor liaison
 - Linac(s) / CT / Brachytherapy

Project Team Organization

- Clinic
 - Physician leadership representation
 - Nursing staff
 - Administration / hospital liaison

- Responsibilities
 - Design clinic space
 - Secure clinical equipment
 - Clinical-staff training and credentialing
 - Hospital / physician liaison
 - EMR design

- Physics / Dosimetry
 - Physics leadership
 - Dosimetry leadership
 - Staff physicists / dosimetrists
 - Radiation safety / regulatory representative(s)

- Responsibilities
 - Physics / dosimetry space design
 - System specification and commissioning
 - Treatment / Imaging
 / Planning
 - Regulatory
 - Physics / dosimetry training

Therapy

- Chief Therapist
- Staff therapist(s)
- Administration
- Physics / Dosimetry representative

- Responsibilities
 - Therapy space design
 - Treatment vault(s) / CT suite
 - Immobilization devices
 - EMR design
 - Therapy-staff training

- Front Office
 - Administration
 - Nursing
 - Billing and compliance
 - Medical records / reception
 - IT staff

- Responsibilities
 - Patient reception / registration
 - Medical records
 - EMR and workflows
 - EMR interfaces
 - Billing and compliance
 - Staff training

Information Systems Resp

- IT Director or designee
- IT staff
 - Institution liaisons
- Administration
- Physics / dosimetry
- Clinic staff
- Front desk
- Therapy

Responsibilities

- Servers / network / connectivity
- System(s) interfaces
- Clinical applications
 - EMR, planning systems, QA systems, etc.
- Office automation / communication

Project Teams' Progression: Sample Meeting Format

Project Steering Committee

- UCH KCC Coordinating Committee Standing Meeting Agenda
 - Old Business
 - Update / Time-line Review
 - Recent Activities
 - Barriers Encountered
 - Next Actions
- Link to Meeting Minutes ...

Project Initiation and Planning: Identify and Satisfy Needs

UNIVERSITY of MARYLAND School of Medicine

Project Development

 Project-team members take on different roles during the project phases

Radiation Therapy Clinic Development Project Groups Effort and Phases

Group / Phase	Initiation	Planning	Execution	Monitoring	Closing
Leadership	High	Low	Low	Low	High
Engineering	Low	Moderate	High	Moderate	Moderate
Administration	Moderate	High	Moderate	High	High
Physician	High	Moderate	Low	Low	Moderate
Clinic	Low	High	Moderate	Moderate	Moderate
Physics/Dosimetry	Low	High	Moderate	High	High
Therapy	Low	Moderate	Moderate	Moderate	Moderate
Information Tech.	Low	High	High	Moderate	Low

Project Development

- Required activities versus timeline
 - What needs to be accomplished?
 - Best developed by individual groups
 - Develop checklists during brainstorming sessions
 - Link to Checklist

Project Finalization

- Project Execution Final Stage: Bringing it all Together
 - The End-to-End Test
 - From patient registration to treatment verification
 - Go-Live
- Project Closing

End to End Testing

- Patient Registration
- Clinical Evaluation
- Imaging / Fusion
- Treatment Planning
- Treatment Delivery
- Dosimetry Verification

Building a New Radiation Therapy Clinic: We've Opened – Now What?

THE CLINICAL PROGRAM

The Clinical Program

- Clinical Program
 Organization
 - Medical Directors
 - Operations Managers
 - Section Chiefs
 - Operations
 Committees
 - Advisory Committees

- Committees
 - Operations
 Committees
 - Advisory Committees
 - Link to
 Organizational
 Structure ...

The Clinical Program: Key Committees

- Clinical Operations
 - Decision Making
 - Leadership: Medical Director, Senior Administration
 - Key Advisors: Physics, Therapy, Nursing
 - Reports from Advisory Committees

- Quality Committee
 - Quality / Safety
 - Variance Reporting
 - Safety Notices
 - Manages CQI
 Program
 - Quality Indicators

Useful Source Document: ACR / ASTRO Practice Parameter for Radiation Oncology 2014

Epilogue ...

- Opening a Radiation Oncology Center
 - Lessons Learned ...
 - Teamwork, Teamwork, Teamwork ... It takes a village ...
 - Murphy's Law ... Plan on it
 - Add 20% ... to costs, time, effort
 - But ... it can be done
 - And it's very rewarding !!

Acknowledgements ... and Thank You !!

- I wish to acknowledge my University of Maryland Department of Radiation Oncology colleagues
 - In particular Erika Maynor
 - Without them, what we have accomplished would not have been possible!
- Thank you for your kind attention!

