

Danielle Beaulieu, M.Sc. Department of Radiology Boston Children's Hospital

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Learning Objectives

- 1. Dual-Energy CT Review
- 2. Dual-Energy Technologies
- 3. Annual Testing
 - A. Image Quality
 - B. Dosimetry

Boston Children's Hospital

Learning Objectives

- 1. Dual-Energy CT Review
- 2. Dual-Energy Technologies
- 3. Annual Testing
 - A. Image Quality
 - B. Dosimetry

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Dual-Energy CT Review

Two kVps, one projection per kVp

100 kVp

Boston Children's Hospital

140 kVp

Images from [1].

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

1

Dual-Energy CT Review

100 kVp

Boston Children's Hospital

140 kVp

Images from [1].

Dual-Energy CT Review

Calcium highlighted in red, iodine highlighted in blue

Boston Children's Hospital Until every child is well lodine (Z = 53) Xenon (Z = 54) Barium (Z = 56)

Calcium (Z = 20)

Photoelectric effect Peaks at Z = 55.

Image from [1].

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Dual-Energy CT Review

The mixed image $I\,{\rm from}$ two images $I_L\,{\rm and}\,\,I_H$

 $I = I_L w_L + I_H w_H$

weighting factors w_L and w_H , where $w_L + w_H = 1$.

One more factor to consider for optimization.

Boston Children's Hospital

Formula from [2].

Learning Objectives

- 1. Dual-Energy CT Review
- 2. Dual-Energy Technologies
- 3. Annual Testing
- A. Image Quality
- B. Dosimetry

Boston Children's Hospital

Vendor Technologies

- Single-source, single-energy (Philips)
 kV filtering via layered detectors
- Single-source, dual-energy (GE)

 Rapid kV switching
- Dual-source, dual-energy (Siemens)
- Others...

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

<section-header><section-header> Single-source, single-energy Dilps <u>vergets</u> <u>vergets</u>

Learning Objectives

3. Annual Testing

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

ACR Annual Testing Requirements

- **Review of Clinical Protocols**
- А. В. С. Scout Prescription and Alignment Light Accuracy Image Thickness – Axial Mode
- D. Table Travel Accuracy
- Radiation Beam Width
- Low-Contrast Performance
- Spatial Resolution
- н. CT Number Accuracy
- Artifact Evaluation
- CT Number Uniformity
- K. Dosimetry
- Gray Level Performance of CT Acquisition Display Monitors

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

ACR Annual Testing Requirements

- F. Low-Contrast Performance
- Spatial Resolution G
- н. CT Number Accuracy
- Artifact Evaluation
- **CT Number Uniformity**
- К
- Dosimetry
- Gray Level Performance of CT Acquisition Display Monitors

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

ACR Annual Testing Requirements

- Radiation Beam Width Low-Contrast Performance
- G.
- Spatial Resolution CT Number Accuracy Artifact Evaluation CT Number Uniformity
- Dosimetry

К.

Gray Level Performance of CT Acquisition Display Monitors

Image Quality

Boston Children's Hospital Until every child is well

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

ACR Annual Testing Requirements

Image Quality

- Low-Contrast Performance Spatial Resolution CT Number Accuracy Artifact Evaluation CT Number Uniformity
- G.
- н.

- Gray Level Performance of CT Acquisition Display Monitors L.
- Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Learning Objectives

3. Annual Testing

- A. Image Quality

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Image Quality of DE Scans

ACR Phantom Tests:

- Low-Contrast Performance
- Spatial Resolution
- CT Number Accuracy
- Artifact Evaluation
- CT Number Uniformity

Boston Children's Hospital Until every child is well

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Image Quality of DE Scans

Procedure:

- 1. Select SE protocol
- 2. Record displayed CTDI_{vol}
- 3. Scan ACR phantom
- 4. Select DE protocol
- 5. Match CTDI_{vol} from SE protocol
- 6. Scan the ACR phantom

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

<section-header><complex-block><complex-block>

Learning Objectives Do 1. Dual-Energy CT Review 2. DECT Technologies 3. Annual Testing A. Image Quality B. Dosimetry B. Dosimetry

Dosim	etry					
ACR CT Accreditation Program Testing Instructions						
	Examination	Pass/Fail Criteria CTDI _{vol} (mGy)	Reference Levels CTDI _{vol} (mGy)			
	Adult Head	80	75			
	Adult Abdomen	30	25			
	Pediatric Head	40	35			
	Pediatric Abdomen	20	15			
"each	Joint Com	mission Requ must be] within 2 yed on the CT con	uirements 0 percent of the 0 sole."	CTDIvol		
Boston Child	dren's Hospital is well"		6	HARVARD MEDICAL SCHOOL TEACHING HOSPITAL		

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

<section-header><section-header><section-header><section-header><section-header><section-header><image>

Radiation Dosimetry (Adult Abdomen)			
Use the TAB key to move between data entry cells in the colum	nn named Measured.		
CTDI Body Phantom (32-cm diameter PMMA Phantom)	Neasured	Calculated	
kvp	80		
na -	456		
Exposure time per rotation (8)	0.5		
z axe coamation ((mm)	96		
# data channels used (N)	0.6		
Addal (A): Table Increment (mm) = (I)			
Helical 0+0:Table Speed (mm/rot) = (0			
Active Chamber length (mm)	00.12		
Chamber competion factor	100		
Center	_		
Measurement 1 (mR)			
Measurement 2 (mR)	-		
Measurement 3 (mR)	-		
Average of above 3 measurements (mR)		0000	
Head CTDI at isocenter in phantom (mGv)		00/00	
12 o'clock position		in printer	
Measurement 1 (mR)			
Measurement 2 (mR)			
Measurement 3 (mR)			
Average of above 3 measurements (mR)		#01//01	
Head CTDI at 12 o'clock position in phantom (mGy)		#DIW08	
CTDIw (mGy)		100.000	
Clinical exam dose estimates (using measured CTDIw and sit	te's Adult Head Protocol from	Table 1	
CTDIvol (mGy)	#CTDW/N°T0	#DIV/0	
DLP (mGy-on)	CTDbor 17.5	#D/V/0/	
Eff Dose (mSv)	=DLP10.0021	101/0	
Displayed CTDI (mGy)			
	% Displayed Error	400/00/	

References

- Johnson, T. R. C. (2012). Dual-energy CT: general principles. AJR. American Journal of Roentgenology, 199(5 Suppl), 3–8. <u>https://doi.org/10.2214/AJR.12.9116</u>
- Yu, L., Primak, A. N., Liu, X., & McCollough, C. H. (2009). Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. *Med Phys*, 36(3), 1019–1024. <u>https://doi.org/10.1118/1.3077921</u>
- Primak, A. N., Giraldo, J. C. R., Eusemann, C. D., Schmidt, B., Kantor, B., Fletcher, J. G., & McCollough, C. H. (2010). Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in vivo. *American Journal of Roentgenology*, 195(5), 1164–1174. https://doi.org/10.1016/j.001056
- Faby, S., Kuchenbecker, S., Sawall, S., Simons, D., Schlemmer, H.-P., Lell, M., & Kachelrieß, M. (2015). Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. *Medical Physics*, 42(7), 4349–4366. https://doi.org/10.1112/i.40230564

Boston Children's Hospital

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL