Introduction to Monte Carlo simulations at the (sub-)cellular scale: **Concept and current status**

Jan Schuemann Assistant Professor Head of the Multi-Scale Monte Carlo Modeling Lab Massachusetts General Hospital & Harvard Medical School

AAPM Annual Meeting 08/01/2017

Monte Carlo Applications in Biomedicine

★ MC consider gold J. Schuemann et. al, PMB. 2014, IJROBP 2015 Range difference MC-ADC standard headner king broad TOPAS ★ Comparing Monte Carlo 3.5% to TPS AN AN AN ★ Effects of high density interfaces parallel to 1 100 120 148 Prescribed range (mm beam on analytical ğ calculations clearly % difference in DVH s MC-ADC visible 1 1 1 1 / 1111 1.05 1 . 1 ★ Various studies have 1.1 . compared TPS to 1.05 IC-ADC 1.4 1 1 Monte Carlo i i 1 ★ D50, D90, R90, EUD, TCP, NTCP, ...

CONTRACTORIESTICS MEDICAL

Sample Patient study, dose, range, TCP, NTCP

Including Biology ★ Clinical endpoint of interest: Biological effect Structure of a Generalized Cell

Including Biology: Relative Biological Effect - RBE

Including Biology

- ★ There is a large gap between physics events and biological outcome (and physics/biology research)
- ★ Protons assumed10% more effective than photons: Clinically used RBE = 1.1
- ★ Examples for RBE dependence:
- the modeling approach
 α/β ratio
- * wpia
- * LET Why do we focus on LET? It is factor we can influence It's physics Independent of the model

11.

The reason for increasing RBE with increasing LET

Provide MC simulations at the nanometer scale No approximations in physics descriptions* Includes very low energy processes Track structure goals: Track structure goals: Space radiation effects (out-of-field, SPE, GCR) Electronics etc.

Nanometer scale Monte Carlo track structure codes

Applicability

★ Track structure simulations are very time consuming!

- \star Not feasible for whole patient treatment plan
- ★ Pick the region of interest:
 - \star Select cells across tumor
 - \star Cells in healthy tissue
- \bigstar Biological modeling goals, study:
 - \star cell structure effects
 - \star (single) cell response to radiation
 - ★ new ideas (i.e. GNP)

MARKACHESETTS GENERAL HONOTAL RADIATION ONCOLORY

- ★ Dosimetry at nanometer scale is non-trivial
- ★ water cross sections extrapolated from gas form
 ★ use density scaling → micrometer scale dosimetry
- ★ but gas ≠ water
- ★ most MC physics only valid for water
 - ★ most experimental data available for water
 - ★ majority of the cell is water
- ★ uncertainties even for water high in low Energy region

RADIATION ONCOLOGY

Water vs. other materials

- ★ Biological systems consist mostly of water
- ★ Most important radiation target: DNA
 - \bigstar not the same as H_2O
 - \star varying density with cell cycle stage
- \star base-pair wrapping, interactions, etc.
- ★ Other materials necessary for
 - ★ Gold nanoparticles
 - $\star\,$ Silicon (space radiation effects on electronics)
- * etc.

M. Raine et al. / Nuclear Instrume

<section-header><section-header>

5

From Energy Depositions to DSBs

- \star To obtain DNA damage, use single fibers or double helix stands
- ★ categorize damages:
 - ★ SSB: 1 damage on 1 strand
 - \star SSE: 2 damages on same strand (<10 base paris)
 - ★ DSB: 1 damage on each strand within 10 hp

Hauptner et al MFM52

What happens afte	r the initial DNA damage?
10 ^{−10} 10 ^{−6} s	Chemistry- radical reactions, protonation, deprotonations
10 ⁻⁶ 10 ¹⁰ s	Biochemistry & biology

J. Schuemann

RAISACHESETTS RAISACHESETTS RAISACHESETTS MEDICAL SCHOOL MEDICAL SCHOOL

What can we do: Studying effects on sub-cellular structures

What can we do: Full Track Structure GNP simulations

- ★ Use realistic GNP distributions in/around cells
- ★ Many studies use radial dose distributions around GNPs, but
 - ★ Most GNPs don't interact
 - ★ Dose not radially symmetric
 - \star Only full track structure simulations can capture real effects
- ★ Gold cross sections recently published

★ Similar argument holds for other scenarios

CENERAL ROSPITAL

Summary

- ★ Track structure simulations can help us understand sub-cellular effects
- ★ Best use for:
 - ★ low dose (space, out of field)
 - ★ high LET radiation (less tracks, more structure)
- ★ Emerging Technology
 - ★ still very much under development
 - ★ steadily expanding
- ★ Goal: Advance understanding of radiation effects
 - $\star\,$ connect physics to biology
 - ★ close the gap from the bottom up

Is nanometer scale in 3D enough?

- ★ Two-color volume rendering of a neutrophilic HL-60 cell expressing mCherry-utrophin migrating through a 3D collagen matrix
- ★ Complex 4D behavior of cells ★ Not even considering inter-cell
- signaling
- ★ Lots left to do

HARVARD MEDICAL

9

Acknowledgements

- ★ Aimee McNamara
- ★ Jose Ramos
- ★ Ianik Plante
- ★ Harald Paganetti
- ★ Kathryn Held
- ★ NIH/NCI for funding R01 CA7300045

The TOPAS and

TOPAS-nBio collaborations

RADIACHESETTS RADIATION ONCOLOGY