QA for Modern Radiation Therapy: Autonomous QA Strategy for Digital Linacs

Yong Yang, Ph.D. Department of Radiation Oncology Stanford University

2017 AAPM Therapy Educational Course

Disclosure

I have no conflicts of interest to disclose.

Acknowledgement

- Lei Xing, Ph.D.
- Cesare H Jenkins, Ph.D.
- Ben Fahimian. Ph.D.
- Amy Yu, Ph.D.
- Bin Han, Ph.D.
- Ruijiang Li, Ph.D.

Objectives

- Understand the complex and time consuming nature of quality assurance (QA) for a modern Linac
- Understand the programmable features of digital Linacs
- Understand the advantages and general process of autonomous QA for digital Linacs

Outlines

- Quality assurance (QA) for a modern medical Linac
- An overview of the programmable features of digital Linacs
- Autonomous QA for digital Linacs
- Summary

QA for A Modern Medical Linac: TG-142

Modern digital Linacs

- FFF beams, Dynamic/Virtual wedges...
- 6D Couch
- MLC
- Imaging Systems: *kV, MV, CBCT...*
- Respiratory gating
- Special techniques: *IMRT/VMAT*, *SRS/SBRT*...

Varian TrueBeam STx with Brainlab ExacTrac

TG-142: A comprehensive Linac QA Guideline

Task Group 142 report: Quality assurance of medical accelerators^{a)}

Eric E. Klein^{b)} Washington University, St. Louis, Missouri

Joseph Hanley Hackensack University Medical Center, Hackensack, New Jersey

John Bayouth University of Iowa, Iowa City, Iowa

Fang-Fang Yin Duke University, Durham, North Carolina

William Simon Sun Nuclear Corp., Melbourne, Florida

Sean Dresser Northside Hospital, Atlanta, Georgia

Christopher Serago Mayo Clinic, Jacksonville, Florida

Francisco Aguirre M. D. Anderson Cancer Center, Houston, Texas

Lijun Ma University of California, San Francisco, San Francisco, California

Bijan Arjomandy M. D. Anderson Cancer Center, Houston, Texas

Chihray Liu University of Florida, Gainesville, Florida

Consultants:

Carlos Sandin Elekta Oncology, Crawley, United Kingdom

Todd Holmes Varian Medical Systems, Palo Alto, California

- Dosimetry
- Mechanical
- Safety
- MLC
- Imaging: kV, MV, CBCT
- Respiratory gating
- Special procedures: IMRT/VMAT, SRS/SBRT, TBI,...

Frequency:

- Daily
- Monthly
- Annually

Daily QA

- Dosimetry
- Mechanical
- Safety
- Imaging

• EDW/Virtual/Universal

TABLE I. Daily.

wedge: functional

- MLC: Weekly Picket
 - Fence

			Machine-type tolerance	;
Procedure	Procedure		IMRT	SRS/SBRT
Dosimetry				
Electron output of	istancy (all energies) constancy (weekly, hines with unique equiring daily)		3%	
Mechanical				
Laser localization	n	2 mm	1.5 mm	1 mm
4203 Distance indicate	or (ODI) @ iso	2 mm	2 mm	2 mm
Collimator size i	ndicator	2 mm	2 mm	1 mm
Safety				
Door interlock (t	beam off)		Functional	
Door closing safe	ety		Functional	
Audiovisual mon	nitor(s)		Functional	
Stereotactic inter	locks (lockout)	NA	NA	Functional
^{1 mm} Radiation area m	nonitor (if used)		Functional	
Beam on indicate	or		Functional	

4203 Klein <i>et al.</i> : Task Group 142 Report: QA of Med	lical Accelerators	4203
TABLE VI. Imaging.		
	Application-typ	pe tolerance
Procedure	non-SRS/SBRT	SRS/SBRT
	Daily ^a	
Planar kV and MV (EPID) imaging		
Collision interlocks	Functional	Functional
Positioning/repositioning	≤2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)	≤2 mm	≤1 mm
Cone-beam CT (kV and MV)		
Collision interlocks	Functional	Functional
Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
Positioning/repositioning	≤1 mm	≤1 mm

Monthly QA

- Dosimetry
- Mechanical
- Safety
- Gating
- Wedge factors
- MLC
- Imaging

Monthly	,
Setting vs radiation field for two patterns (non-IMRT) Backup diaphragm settings (Elekta only) Travel speed (IMRT) Leaf position accuracy (IMRT)	2 mm 2 mm Loss of leaf speed >0.5 cm/s 1 mm for leaf positions of an IMRT field for four cardinal gantry angles. (<i>Picket fence</i> test may be used, test depends on clinical planning-segment size)

TABLE II. Monthly.				
	Machine-type tolerance			
Procedure	Non-IMRT	IMRT	SRS/SBRT	
Dosimetry				
X-ray output constancy Electron output constancy Backup monitor chamber constancy		2%		
Typical dose rate ^a output constancy	NA	2% (@ IMRT dose rate)	2% (@ stereo dose rate, MU)	
Photon beam profile constancy Electron beam profile constancy Electron beam energy constancy		1% 1% 2%/2 mm		
Mechanical				
Light/radiation field coincidence ^b Light/radiation field coincidence ^b (asymmetric) Distance check device for lasers compared with front pointer Gantry/collimator angle indicators (@ cardinal angles) (digital only) Accessory trays (i.e., port film graticle tray) Jaw position indicators (symmetric) ⁶ Jaw position indicators (asymmetric) ^d Cross-hair centering (walkout) Treatment couch position indicators ^e Wedge placement accuracy Compensator placement accuracy ^f Latching of wedges, blocking tray ^g Localizing lasers	2 mm/1° ±2 mm	2 mm or 1% on a side 1 mm or 1% on a side 1mm 1.0° 2 mm 2 mm 1 mm 2 mm/1° 2 mm 1 mm Functional ±1 mm	1 mm/0.5° <±1 mm	
Safety				
Laser guard-interlock test		Functional		
Respiratory gating				
Beam output constancy Phase, amplitude beam control In-room respiratory monitoring system Gating interlock		2% Functional Functional Functional		

Monthly QA---Imaging

EPID, kV imaging, CBCT

- Safety and functional
- Mechanical
- OBI isocenter accuracy
- Couch shift accuracy
- Image quality

	Monthly	
Planar MV imaging (EPID)		
Imaging and treatment coordinate coincidence (four cardinal angles)	≤2 mm	≤1 mm
Scaling ^b	≤2 mm	≤2 mm
Spatial resolution	Baseline ^c	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Planar kV imaging ^d Imaging and treatment coordinate coincidence	≤2 mm	≤1 mm
(four cardinal angles)		
Scaling	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
Uniformity and noise	Baseline	Baseline
Cone-beam CT (kV and MV)		
Geometric distortion	≤2 mm	≤1 mm
Spatial resolution	Baseline	Baseline
Contrast	Baseline	Baseline
HU constancy	Baseline	Baseline
Uniformity and noise	Baseline	Baseline

Annual QA

- Dosimetry
- Mechanical
- Safety
- Gating
- Wedge angles
- MLC
- Imaging

		Electron and x-ray off-axis factor		+
Safety		constancy vs gantry angle Arc mode (expected MU, degrees)		- +
Follow manufacturer's test procedures	Functional	TBI/TSET mode PDD or TMR and OAF constancy		1% (TBI) or 1 mn
Respiratory gating		TBI/TSET output calibration TBI/TSET accessories		2
Beam energy constancy Temporal accuracy of phase/amplitude	2% 100 ms of expected	Mechanical		-
gate on Calibration of surrogate for respiratory	100 ms of expected	Collimator rotation isocenter Gantry rotation isocenter		±1 ±1
phase/amplitude Interlock testing	Functional	Couch rotation isocenter Electron applicator interlocks		±1
interiori doung	- unotronal	Coincidence of radiation and mechanical isocenter	±2 mm from baseline	±2

TABLE III. Annual.			
	Machine-type tolerance		
Procedure	Non-IMRT	IMRT	SRS/SBRT
Dosimetry			
X-ray flatness change from baseline		1%	
X-ray symmetry change from baseline		±1%	
Electron flatness change from baseline		1%	
Electron symmetry change from baseline		±1%	
SRS arc rotation mode (range: 0.5–10 MU/deg)	NA	NA	Monitor units set vs delivered: 1.0 MU or 2% (whichever is greater) Gantry arc set vs delivered: 1.0° or 2% (whichever is greater)
X-ray/electron output calibration (TG-51)		$\pm 1\%$ (absolute)	
Spot check of field size dependent output factors for x ray (two or more FSs)		2% for field size <4×4 cm ² , 1% ≥4×4 cm ²	
Output factors for electron applicators (spot check of one applicator/energy)		$\pm 2\%$ from baseline	
X-ray beam quality (PDD ₁₀ or TMR ²⁰ ₁₀)		$\pm 1\%$ from baseline	
Electron beam quality (R_{50})		±1 mm	
Physical wedge transmission factor constancy		$\pm 2\%$	
X-ray monitor unit linearity (output constancy)	$\pm 2\% \geq 5$ MU	$\pm 5\%$ (2–4 MU), $\pm 2\% \ge 5$ MU	$\pm 5\%$ (2–4 MU), $\pm 2\% \ge 5$ MU
Electron monitor unit linearity (output constancy)		±2% ≥5 MU	
X-ray output constancy vs dose rate		$\pm 2\%$ from baseline	
X-ray output constancy vs gantry angle		$\pm 1\%$ from baseline	
Electron output constancy vs gantry angle		$\pm 1\%$ from baseline	
Electron and x-ray off-axis factor constancy vs gantry angle		$\pm 1\%$ from baseline	
Arc mode (expected MU, degrees)		$\pm 1\%$ from baseline	
TBI/TSET mode		Functional	
PDD or TMR and OAF constancy		1% (TBI) or 1 mm PDD shift (TSET) from baseline	
TBI/TSET output calibration		2% from baseline	
TBI/TSET accessories		2% from baseline	
Mechanical			
Collimator rotation isocenter		± 1 mm from baseline	
Gantry rotation isocenter		± 1 mm from baseline	
Couch rotation isocenter		± 1 mm from baseline	
Electron applicator interlocks		Functional	
Coincidence of radiation and mechanical isocenter	±2 mm from baseline	± 2 mm from baseline	± 1 mm from baseline

Annual QA

MLC

- MLC transmission
- MLC spoke shot
- Coincidence of light and x-ray field
- IMRT/VMAT checks

Imaging

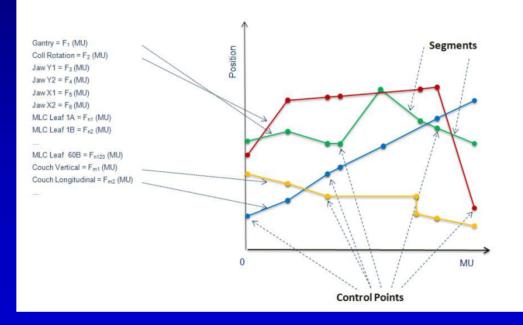
- Imaging dose
- Beam quality/energy

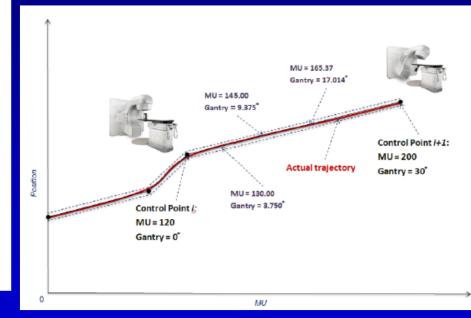
Annually	
MLC transmission (average of leaf and interleaf	$\pm 0.5\%$ from baseline
transmission), all energies	
Leaf position repeatability	±1.0 mm
MLC spoke shot	$\leq 1.0 \text{ mm radius}$
Coincidence of light field and x-ray field (all energies)	±2.0 mm
Segmental IMRT (step and shoot) test	<0.35 cm max. error RMS, 95% of error counts
	<0.35 cm
Moving window IMRT (four cardinal gantry angles)	<0.35 cm max. error RMS, 95% of error counts
	<0.35 cm

±5 mm
Baseline
Baseline
Baseline
Baseline

Need for Autonomous QA

- QA for a modern Linac has been extremely extended with new components/functions added
- QA has become a complicated and very time consuming task

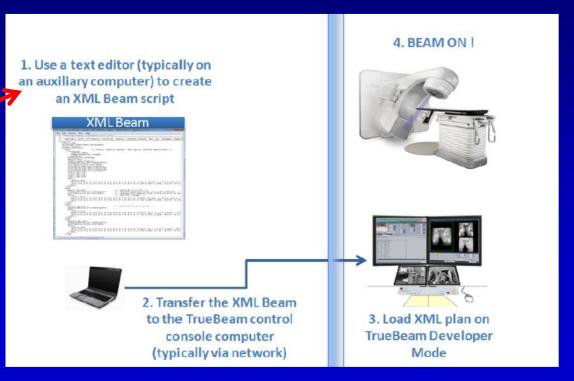

Table 3. Time (hours) spent undertaking linear accelerator QC testing					
Time category	Minimum value	First quartile	Mean	Third quartile	Maximum value
Total machine time (hours per linear accelerator per month)	3.0	10.0	15.0	20.0	35.0
Total time including offline analysis (hours per linear accelerator per month)	5.0	13.1	19.5	26.2	56.0
Total time for patient-specific IMRT QC per patient	0.0	1.0	1.5	2.1	10.0


Autonomous QA: More Efficient, stable and accurate

Programmable Automatic Delivery/Operation

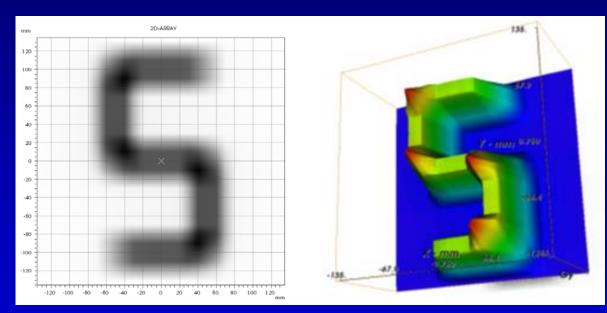
Implementation of Automatic Delivery

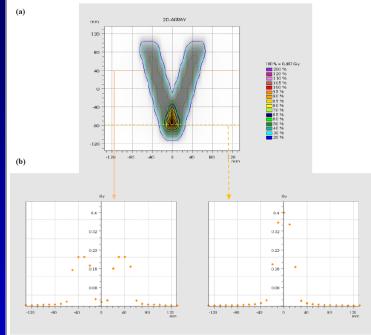
Control points and delivery trajectory



From Varian Developer mode Manua

Varian TrueBeam Developer Mode


Control all motion axes, beam delivery and imaging through programmable XML Beam scripts


fer Veritas: TrueBeam Developer Mode	
File Help	
New Open Dcm2xml Save Ext	Veritas
MV beam on Imaging	
Generated XML File	0.8-
<kv> <klavolts>40.0</klavolts> <kliamperas>20.0</kliamperas> <klibeconds>10.0</klibeconds></kv>	06-
<pre><pocalspot>Large</pocalspot> <fluoroleveeontrob>Low <autobightnesscontrob-faile< autobightnesscontrob=""> <doserecording>true</doserecording> <fgremeate>.0</fgremeate></autobightnesscontrob-faile<></fluoroleveeontrob></pre>	0.4
<pre></pre>	0.2
<rvd> <postons></postons> </rvd> <rvs></rvs>	0.0 0.2 0.4 0.6 0.8 10
<pre><postcont></postcont> </pre> //Koss /ImagingPoints <pre>/ImagingPoints</pre> <pre>/ImagingTolerances/> </pre>	X-805 • Y-805 •
 	Plot Axes
4	
6	Open XHL File
Developer Mode is intended for non-clinical use	e only and is NOT cleared for use on humans

From Varian Developer mode Manua

Simple Examples

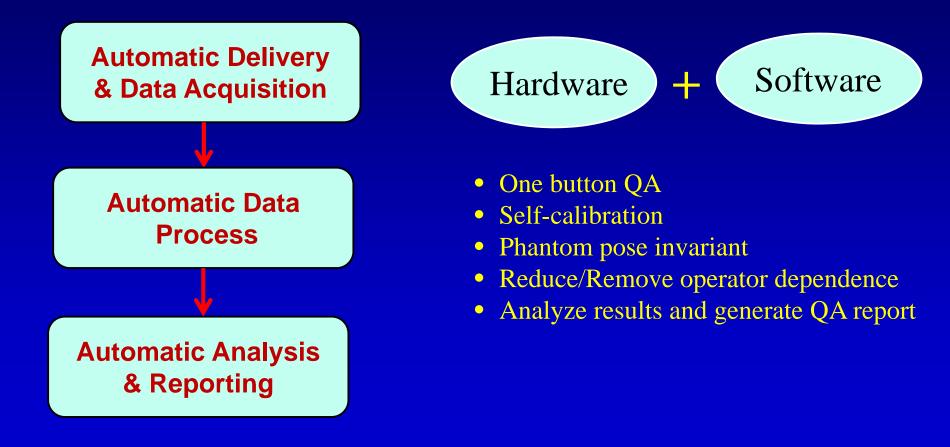
(a) Resulting radiation pattern for Varian 'V' produced solely by couch motion (b) The left-right symmetry indicates high geometrical accuracy and stability of the automated couch motion

Courtesy of Ben Fahimian

Produced by couch motion

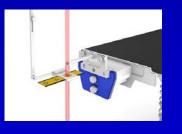
Complicated Examples

Chin, Fahimian | Stanford University


TLI / CSI Trajectory

Courtesy of Ben Fahimian

Implementation of Autonomous QA


An Ideal Autonomous QA Process

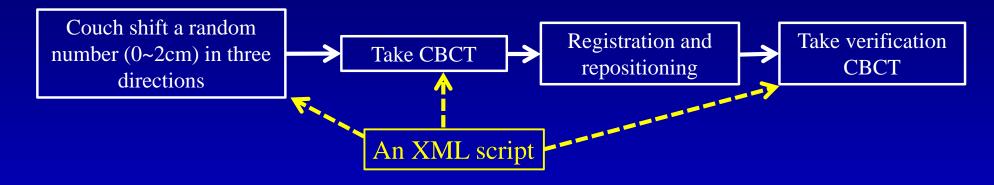
Autonomous Imaging QA

Daily Imaging QA

- Imaging and treatment coordinate coincidence
- Couch positioning/repositioning
- Winston-Lutz test

Winston-Lutz test kit from BrainLAB

- 1. An XML script loaded in TrueBeam developer mode to automatically take MV images and CBCT images
- 2. Check the embedded BBs positions to verify coordinate coincidence



MIMI Phantom from Standard Imaging Inc.

Gilmer Valdes et al, JACMP, Vol. 16, No. 4, 2015

Daily Imaging QA

Couch positioning/repositioning

Winston-Lutz test

- 1. An XML Script is used to automatically acquire eight MV images with different Gantry and Couch positions.
- 2. An in-house developed software to process data and report the results

https://www.youtube.com/watch?v=JwOvALjRgqE

Gilmer Valdes et al, JACMP, Vol. 16, No. 4, 2015

Monthly imaging QA

- Image quality
- kV, MV and CBCT and treatment coordinate coincidence
- 1. An XML Script is used to automatically acquire images with different Couch positions.
- 2. An in-house developed software to process data and report the results

MINI Phantom OCKV-1 OCKV-1 Emma Phantom QC-3

In-house phantom mount for monthly QA

Results: Physicists vs. Auto QA

Gilmer Valdes et al, JACMP, Vol. 16, No. 4, 2015

TABLE 1. Imaging QA time (mins), physcist vs. full automation.

QA	Physicists	Full Automation
Daily QA	14.3±2.4	4.2±0.7
Winston-Lutz Test	29.1±6.2	3.1±0.9
Imaging monthly QA without geometry calibration and EPID position and reproducibility	58.7±6.6	19.3±1.0
Imaging monthly QA	70.7 ± 8.0	21.8±0.6

Autonomous QA at Stanford

Direct visualization of Radiation

When radiation irradiates a radioluminescent sheet fabricated from a mixture of GOS:Tb and PDMS, the irradiated area become visible.

Is this possible to use this to improve our QA processes?

Jenkins C H et al 2015 Med. Phys. 42 5–13

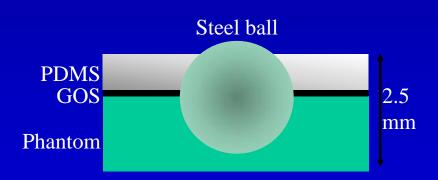
Courtesy of Cesare H Jenkins

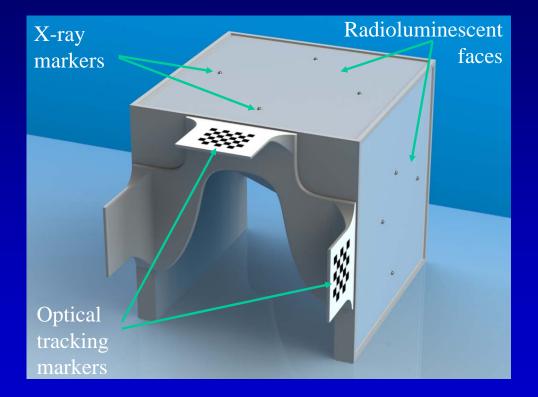
Autonomous Mechanical QA

- Light Field/Radiation field coincidence
- Jaw position indicators
- Cross-hair centering
- Couch position indicators
- Laser localization

Mechanical		
Light/radiation field coincidence ^b		2 mm or 1% on a side
Light/radiation field coincidence ^b (asymmetric)		1 mm or 1% on a side
Distance check device for lasers compared with		1mm
front pointer		
Gantry/collimator angle indicators		1.0°
(@ cardinal angles) (digital only)		
Accessory trays (i.e., port film graticle tray)		2 mm
Jaw position indicators (symmetric) ^c		2 mm
Jaw position indicators (asymmetric) ^d		1 mm
Cross-hair centering (walkout)		1 mm
Treatment couch position indicators ^e	2 mm/1°	2 mm/1°
Wedge placement accuracy		2 mm
Compensator placement accuracy ^f		1 mm
Latching of wedges, blocking tray ^g		Functional
Localizing lasers	±2 mm	$\pm 1 \text{ mm}$

Components for Autonomous QA

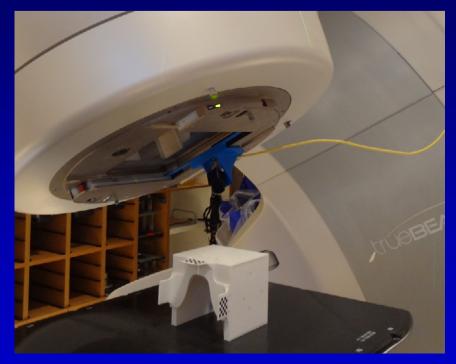

- Phantom
- Camera
- Laptop


Automatic image acquisition, machine operations in Truebeam Developer mode

- Image process
- Data analysis
- Result report

Phantom

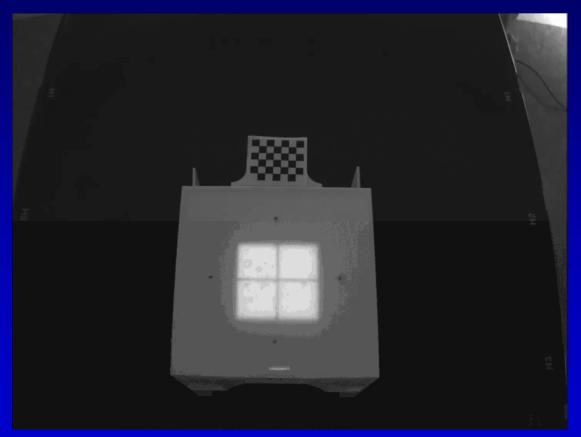
- Structure fabricated on a MakerBot Z18 3D printer
- 2.38 mm stainless steel balls
- PDMS
- Gd₂O₂S:Tb



Jenkins C H et al Phys. Med. Biol. 61 (2016) L29

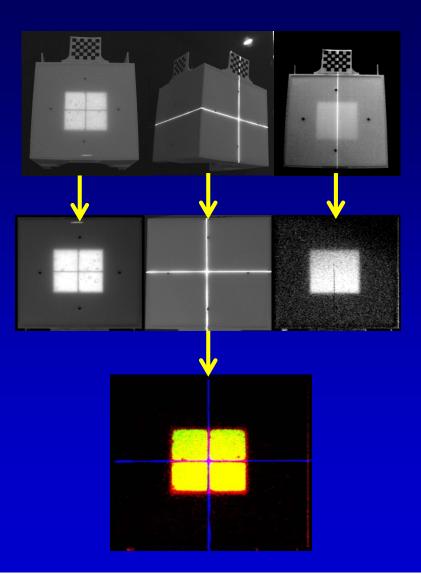
Camera

- Power over Ethernet (POE) machine vision camera
 - Single cable connection
 - 5mm f/2.5 S-mount lens
- 3D printed holder that connects to LINAC tray



Automatic Delivery/Operations

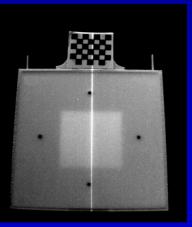
XML Script to implement:


- Turn on/off field light
- Set jaw positions
- Beam on
- Rotate gantry
- Turn on/off laser
- Treatment couch motions
- kV imaging
- Set MLC

Courtesy of Cesare H Jenkins

Image Processing

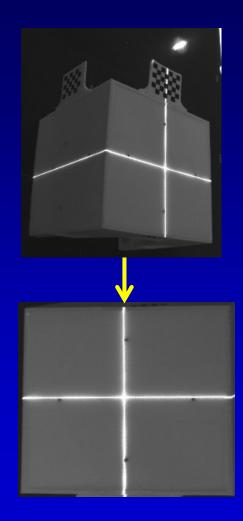
- Image identification and capture
- Transformation
- Analysis


Image identification and capture

Key images were identified based on:

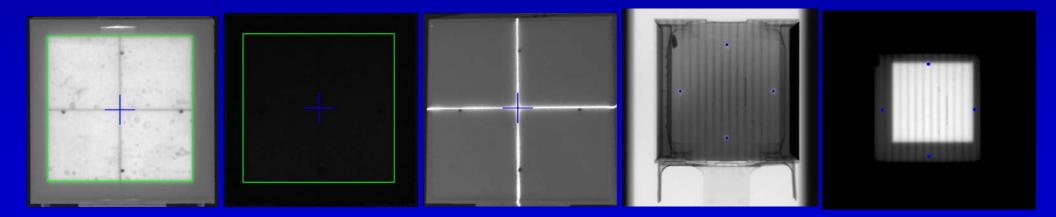
- Known delivery sequence
- Motion detection algorithm

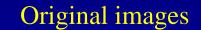
Light Field

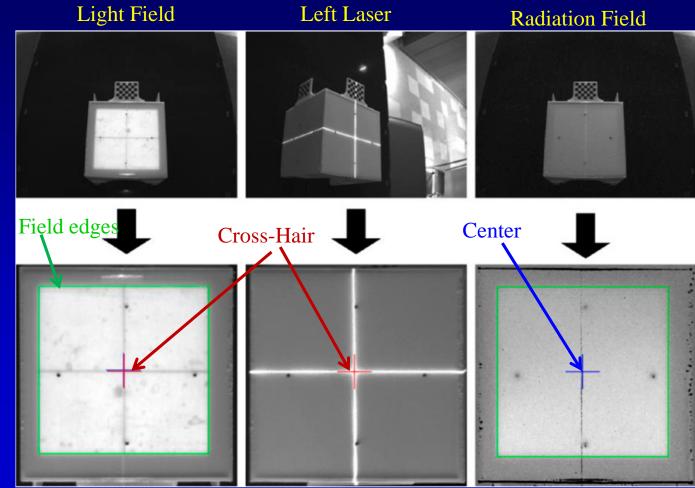

Radiation Field

Left Laser

Transformation


- 1. Transform the pixels corresponding to the phantom face into a calibrated image space
- 2. The transformation was determined as the linear transform that transforms the locations of the four fiducials to their aligned locations within the calibrated image space
- 3. The calibrated images were analyzed to identify the locations of salient features such as field edges, cross-hairs and lasers.
 - Self-calibration
 - Correct for variations in setup


Analysis


- Field Edges -Fit logistic function to find location of half value
- Crosshairs and lasers -Gaussian curve fitting
- kV and MV images

-Image center is projected into the calibrated coordinate space

Image processing example

Transformed and analyzed images

Jenkins C H et al Phys. Med. Biol. 61 (2016) L29

Self-calibration Assessment

Table 1. Self-calibration assessment. Six measurements								
Ten measurements Single phantom setup		Varied phantom setup						
Measurement	Light field cross-hair coincidence (mm)	Light/radiation field coincidence (mm)	Light field cross hair coincidence (mm)	Light/radiation field coincidence (mm)				
Center shift X Center shift Y X1 difference X2 difference Y1 difference Y2 difference	-0.16 ± 0.03 -0.80 ± 0.03	$\begin{array}{c} 0.21 \pm 0.03 \\ 0.61 \pm 0.06 \\ -0.19 \pm 0.06 \\ 0.60 \pm 0.05 \\ 0.99 \pm 0.05 \\ 0.24 \pm 0.11 \end{array}$	-0.10 ± 0.05 -0.86 ± 0.09	$\begin{array}{c} 0.17 \pm 0.06 \\ 0.60 \pm 0.16 \\ -0.19 \pm 0.12 \\ 0.53 \pm 0.06 \\ 0.87 \pm 0.11 \\ 0.32 \pm 0.25 \end{array}$				

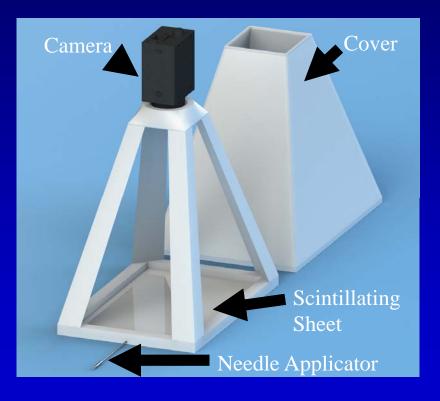
Note: Mean and standard deviations for light field to cross-hair and light/radiation field coincidence measurements made with a single setup versus a unique phantom setup for each measurement.

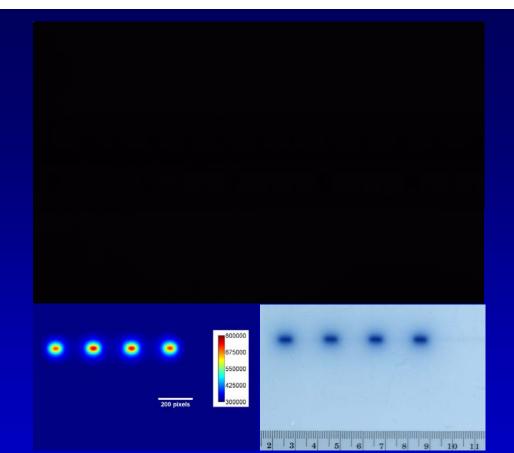
Variations in setup has no significant influence in the measurement results

Jenkins C H et al Phys. Med. Biol. 61 (2016) L29

Auto QA vs. Manual QA

Agree well with manual QA results

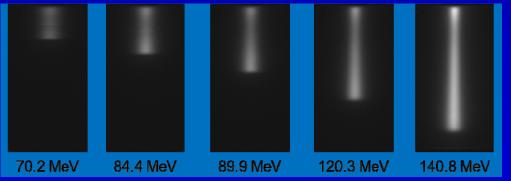

Table 2.	System results compared to	existing methods.				
Light field/ radiation alignment	Symmetric beams	Center shift X (mm)	Center shift Y (mm)	Width difference (mm)	Height difference (mm)	
Auto	5×5 cm	-0.02 ± 0.05	0.68 ± 0.11	-0.58 ± 0.05	-0.59 ± 0.09	
Auto	$10 \times 10 \text{ cm}$	-0.21 ± 0.07	0.96 ± 0.12	-0.63 ± 0.15	-0.94 ± 0.31	
FC-2	15×15 cm	-0.19	0.40	-0.30	0.00	
	Asymmetric beams Difference in position (mm)					
	(X1, X2, Y1, Y2)	X1	X2	Y1	Y2	
Auto	(-3, 4, -3, 4) (cm)	0.23 ± 0.03	-0.39 ± 0.05	-0.26 ± 0.06	-0.95 ± 0.07	
Jaw position indicators	Symmetric beams	Width Difference (mm)	Height Difference (mm)			
Auto	$5 \times 5 \mathrm{cm}$	-0.76 ± 0.02	-1.73 ± 0.06			
Auto	$10 \times 10 \text{ cm}$	-0.46 ± 0.16	-1.71 ± 0.19			
Iso-align	$5 \times 5 \mathrm{cm}$	0.0	-2.0			
Iso-align	10×10 cm	0.0	-2.0			
	Asymmetric beams Difference in position (mm)					
	(X1, X2, Y1, Y2)	X1	X2	YI	Y2	
Auto	(-3, 4, -3, 4) (cm)	0.06 ± 0.06	0.80 ± 0.03	1.40 ± 0.16	0.63 ± 0.21	
Iso-align	(-5, 2.5, -5, -2.5) (cm)	0.0	1.0	1.0	1.0	
Cross-hair centering	Center shift X (mm)	Center shift Y (mm)	Walkout (mm)			
Auto	-0.35 ± 0.03	0.77 ± 0.01	0.87 ± 0.12			
FC-2/Iso-align	-0.25	0.67	0.5			
Couch position	Shifts (lat., long.) (mm)	Lat. (mm)	Long. (mm)			
Auto	(30, 30)	30.17 ± 0.25	30.22 ± 0.15			
Ruler	(200, 300)	200.3	300.4			
Laser localization (relative to cross hairs)	Center shift X (mm)	Center shift Y(mm)				
Auto	$0.19 \pm .30$	-0.26 ± 0.13				
Iso-align	0.25	-0.25				


Note: Summary of tests performed by the autonomous system (mean ± standard deviation) and comparison to current QA techniques (shown in italics).

Conclusion

- Robust automated performance
- Accurate
 - Be able to achieve 0.1mm~0.2mm accuracy, Better/Equivalent to current clinical practice
- Repeatable
 - > Invariant to setup
- More Efficient: ~10 min vs. manual 1~2 hours
 - > Set up: 7:00 min
 - Plan delivery: 1:21 min
 - *Export DICOM: 1:00 min*
 - ➢ Clean up: 2:00 min

Autonomous HDR QA


- Positioning: $1.99 \pm .02$ cm with the system while the result from autoradiography was $2.00 \pm .03$ cm
- Timing: 1 second were determined to be $1.01 \pm .02$ second

Courtesy of Cesare H Jenkins and Ben Fahimian

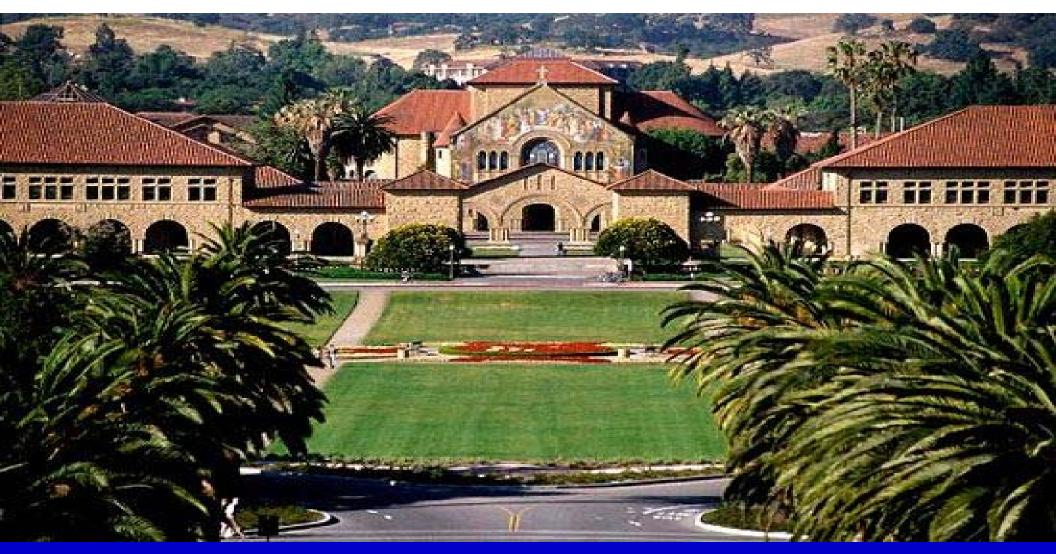
Discrete Spot Scanning Proton Beam Therapy

- MeV protons delivered in bursts to a single spot
- Spot can be steered in XY, modulating energy controls Bragg peak depth (Z)
 - Spot delivery and modulation occurs on millisecond time scale
- Hollow cubic phantom
- CMOS cameras

Spot location accuracy

Courtesy of Cesare H Jenkins

Real time optical visualization of a spot scanning proton therapy beam



Integrated Delivery

Courtesy of Cesare H Jenkins

Summary

- QA for a modern Linac has become a complicated and very time consuming task
- Programmable automatic delivery/operations are available for modern digital Linacs
- Autonomous QA has the potential to provide QA procedures with high efficiency and less operator/setup variation dependence
- Autonomous QA presents an attractive option for future Linac QA procedures

Thank You!