The LQ Formulation – from Model to Practice in Prostate Cancer

Mark Ritter MD, PhD University of Wisconsin - Madison

In Honor of Jack Fowler

Radiobiological provocateur, innovator and teacher extraordinaire

Localized Prost	ate Cancer: Available Treatment Modalities
Surveillance	- (No Dose option)
Radiotherapy:	 Brachytherapy: LDR / HDR High dose EBRT (IMRT) Hypofractionation (incuding SBRT)
Surgery:	- Radical Retropubic - Laparoscopic / Robotic
CryosurgeryHIFU	

Dose Escalation - Rationale

MD Anderson Randomized Trial 300 patients; 60 mo. median followup PSA >10 ng/ml * Conventional radiation therapy 78 Gy (66-70 Gy) fails to achieve local 100 control in many higher risk patients. -raction 70 Gv p = 0.012 * Local failure can lead to the Months after radiotherapy development of distant metastases. Prostate Ca - Intermediate risk: 10 - 19.9 ng/m As on pp 96 & 197, updated to 4-5y results MSK5 FoxChSy MDA4..5 * Dose escalation improves tumor 80 60 LogitFi control but at the risk of higher % bNED 40 J. Fowler, 2000 complications. 20 γ -50 = 2.1 TCD50 = 65.6 Gy 0 50 60 70 80 90 100Gy Equiv total dose in 2 Gy fractionsβ€ 1.5 Gy)

Jack's take:

"What's a poor, confused prostate radiation oncologist to do? GO SIMPLE: Stay with LQ but perhaps adjust the alpha/beta upward as a compromise to best approximate both the low end and the high end of the fraction size spectrum."

Hypofractionated regimens are short. Standard fractionation regimens are long.....

so, does clonogen proliferation have a role?

Practical Time-Dose Evaluations, or How to Stop Worrying and Learn to Love Linear Quadratics

Jack F. Fowler

"This chapter is written mainly for those who say "I don't understand this α/β business – I can't be bothered with Linear Quadratic and that sort of stuff". Well, it might seem boring--depending on your personality--but it is easy, and it makes so many things in radiation therapy wonderfully and delightfully clear."

Technical Basis of Radiation Therapy: Practical Clinical Applications edited by Seymour H Levitt, James A. Purdy, Carlos A. Perez, Philip Poortmans. Springer, 2012

				alent Dose in ons (EQD2)		Intermed. risk	≥ Grade Toxici	
REFERENCE	No. PTS	Dose/fx size/# fxs	α/β = 1.5 (tumor)	α/β = 3 (late effects)	Med. F/U (mo.)	% bPFS	GI	GU
Livsey et al 22 Manchester	705	50 Gy/3.13 Gy/16 fx	66 Gy	61.3 Gy	60	56 (5 yr)	5	9
Akimoto et al 35 Gumma	52	69 Gy/3 Gy/23 fx	88.7 Gy	82.8 Gy	33		25	
Tsuji et al ²⁴ Chiba	201	66 GyE/2/3 GyE/20 fx (carbon ions)	90.5 Gy	83.1 Gy	30	97	2	6
Higgins et al ³³ Edinburgh	300	52.5Gy/2.625Gy/20 fx	61.9 Gy	59.1 Gy	12	55		
Soete et al ³⁶ Jette, Belgium	36	56 Gy/3.5 Gy/16	80 Gy	72.8 Gy				
Martin et al ²⁰ Princess Margaret	92	60 Gy/3 Gy/20 fx	77.2 Gy	72 Gy	36	85	4	3
Kupelian et al ^{21, 37} Cleveland Clinic	770	70 Gy/2.5 Gy/28 fx	80 Gy	77 Gy	45	85	4.5	5.3
Ritter et al ²⁸ Wisconsin	100 100 80 (active)	64.7 Gy/2.94Gy/22 fx 58.1 Gy/3.63Gy/16 fx 51.6 Gy/4.3Gy/12 fx	82.6 Gy 85.1 Gy 85.5 Gy	77 Gy 77 Gy 75 Gy	38 24 14	95	8.5	1
Lukka et al ²³ NCIC	466 470	52.5/2.625 Gy/20 fx 66 Gy/2 Gy/33 fx	61.9 Gy 66 Gy	59.1 Gy 66 Gy	68	40	1.3	1.9
Yeoh et al ³⁸ Adelaid	108 109	55 Gy/2.75 Gy/20 fx 64 Gy/2 Gy/32 fx	66.8 Gy 64 Gy	63.2 Gy 64 Gy	48	57.4 55.5	Alternate scoring	Alternate scoring
Pollack et al ³⁹ Fox Chase	150 150	70.2 Gy/2.7Gy/26 fx 76 Gy/2 Gy/38 fx	84.2 Gy 76 Gy	80 Gy 76 Gy				
RTOG www.rtog.org/members /protocols/0415/0415.pd f	Ongoing (to 1067 pts)	70 Gy/2.5 Gy/28 fx 73.8 Gy/1.8 Gy/41 fx	80 Gy 69.6 Gy	77 Gy 70.8 Gy				
CHIP - MRC	Ongoing (to 2100 pts)	57 Gy/3 Gy/19 fx 60 Gy/3 Gy/20 fx	73.3 Gy 77.2 Gy	68.4 Gy 72 Gy				

A Phase I/II Trial of Increasingly Hypofractionated Radiation Therapy for Prostate Cancer

Investigators

<u>""</u>	
Mark Ritter	
Jack Fowler	- University of Wisconsin
Rick Chappell	
Jeffrey Forman	Wayne State University
Patrick Kupelia	n M.D. Anderson, Orlando
Daniel Petereit	Rapid City, S. Dakota
Colleen Lawton	Medical College of Wisconsin
Ack	nowledgements
Data management	t: Nick Anger, Wendy Walker, Heather Geye
NIH-R010	CA106835; PO1 CA106835

	N	1edian follo		p <mark>atients</mark> f 80, 64 and	50 months
Fract. Level		Dose per Fx (Gy)	# Fxs	Total dose (Gy)	Tumor EQD₂ alpha/beta =1.5
I	101	2.94	22	64.68	82.6
Ш	111	3.63	16	58.08	85.1
Ш	135	4.3	12	51.6	85.5

HEALTI	- The New York Times	
Popular Prostat	e Cancer Therapy Is Short, Intense and Unp	roven.
By GINA KOLATA	MARCH 20, 2017	
Faster	5 treatments vs 40	\checkmark
Cheaper	\$13,645 versus \$21,023 (Medicare claims:Yu, 2014) \$22,152 versus \$35,431 (Hodges, 2012)	\checkmark
Better		?

Institution	Platform		Median	than minimal f	Pts	v-up 5-Year
institution	Flationii	Fractionation	F/U years	Kisk group	F LS	bDFS ^a (%)
Virginia Mason (71)	Gantry-based linac	6.7 Gy × 5	3.4	Low	40	90 ^b
Stanford (73)	CyberKnife	7.25 Gy × 5	2.7	Low and low- intermediate	67	94
Stanford, Naples (79)	CyberKnife	7-7.25 Gy × 5	5	Low and low- intermediate	41	93
Winthrop Hospital (78)	CyberKnife	7–7.25 Gy × 5	6	Low Intermediate	324 153	97 91
San Bortolo (80)	CyberKnife	7 Gy × 5	3	Low, intermediate, and	100	94
Pooled eight institutions (74)	CyberKnife	36–40 Gy in 4–5 fxs	3	high Low Intermediate High	641 334 125	95 84 81
Katz and Kang (81)	CyberKnife	7-7.25 Gy × 5	5	High	97	68
Multi-institution (82)	CyberKnife	8 Gy × 5	3	Intermediate	137	97
Sunnybrook (76)	Gantry-based linac	7 Gy × 5	4.7 5	Low	84	97
Twenty-first century (77)	Gantry-based	8 Gy × 5	5	Low	98	99

