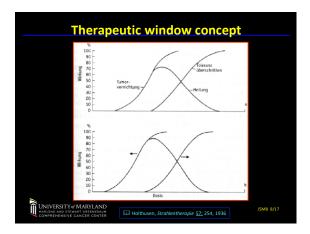
UNIVERSITY & MARYLAND

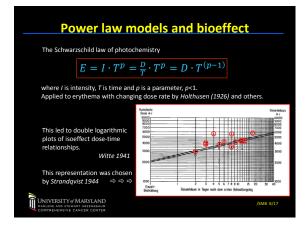
AAPM 2017

The mathematics of dose-fractionation Linear-Quadratic Modeling -**Current Status and Where to Next?**

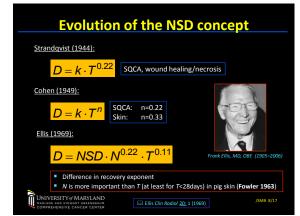
Søren M Bentzen, Ph.D., D.M.Sc. Division of Biostatistics and Bioinformatics, Dept. of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, USA <u>sbentzen@som.umaryland.edu</u>

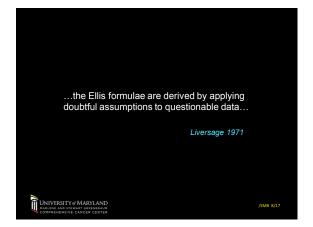


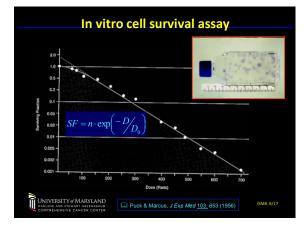
Towards understanding RT dose-response

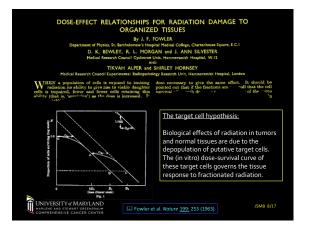


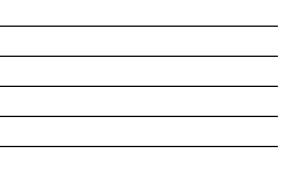
UNIVERSITY & MARYLAND





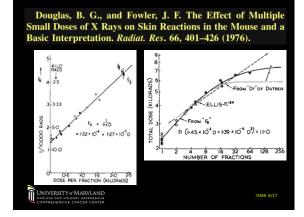






Liversage's criticisms (1971)						
		$D = NSD \cdot N^{\vee} \cdot T^{\tau}$				
		is the same for tumours and normal tissues is zero for tumours				
→	The differe	ence in recovery exponents is an artefa	act !!			
\rightarrow	v varies fr	om one tumour to another				
\rightarrow	The value	of τ depends on the data set being us	ed			
\rightarrow	In particul	ar, two animal studies gave different va	alues of τ			
\rightarrow	Isoeffect of	curves in the Strandqvist plot are not lin	iear !!			
UNIVERSITY	MARYLAND	□ Liversage <i>BJR</i> <u>44:</u> 91 (1971)	/SMB 8/17			

The target cell paradigm


"The object of treating a tumour by radiotherapy is to damage every single potentially malignant cell to such an extent that it cannot continue to proliferate"

Munro and Gilbert BJR <u>34:</u> 246, 1961

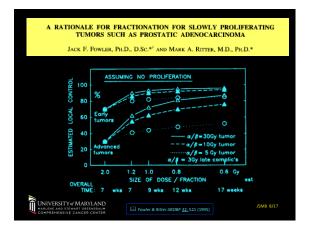
"There are good reasons for believing that the primary effects of radiation on tissues are cell damage and cell depopulation in renewing populations. . . "

mes and Hendry Fractionation in Radiotherapy, p.1, 1987

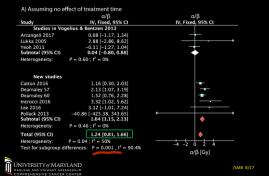
UNIVERSITY of MARYLAND

Equieffective do	ose	<u>es</u> -	- C(orre	ect	ing	fo	r d	ose	e/f	raction
D _{re} , delivered un conditions, produc effect with respe endpoint, as the o with dose per	ce ar ict to lose	n equ o a sp D de	iivale becifi liver	nt c		D _{re}	f = .	$D \cdot \frac{d}{d}$	•g- ref -	+ α/ + α/	$\frac{\beta}{\beta}$
Symbol											
$EQD2_{\alpha/\beta}$											
EQD0 _{\alpha/\beta}											
Range of applicability:								_	_		_
appricability.	0	1	2	3	4	5	6	7	8	9	10
				Dose	e per	frac	tion	(Gy)			
UNIVERSITY of MARYLAND MARLENE AND STEWART GREENEBAUM COMPREHENSIVE CANCER CENTER			Bent	zen et a	I. R&O ;	<u>105:</u> 26	6 (2012				/SMB 8/17

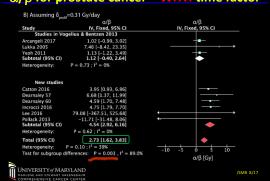
Altered fractionation


- Hyperfractionation:
 - dose per fraction less than 1.8 Gy
- Accelerated fractionation:
 - rate of dose accumulation exceeds 10 Gy/week

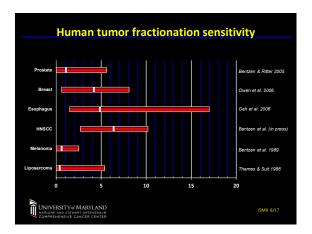
/SMB 8/17

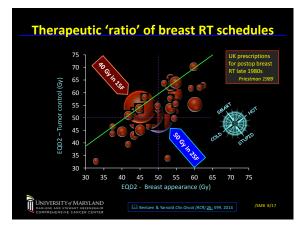

Hypofractionation:

UNIVERSITY & MARYLAND

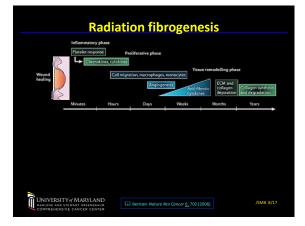

dose per fraction exceeding 2.2 Gy

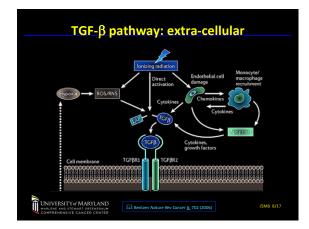
α/β for prostate cancer – NO time factor

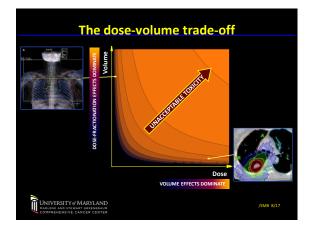


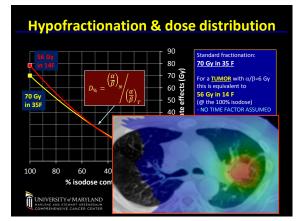


α/β for prostate cancer – WITH time factor

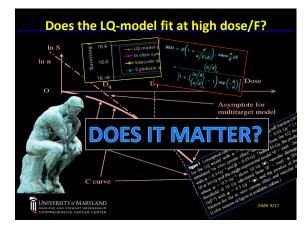


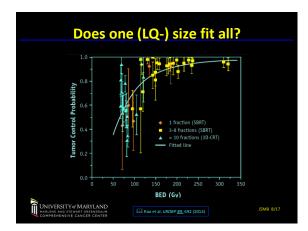






TGF-β signaling: intra-cellular Î Co-fe 1 Target gene Tissue-inhib of matrix proteinases UNIVERSITY & MARYLAND

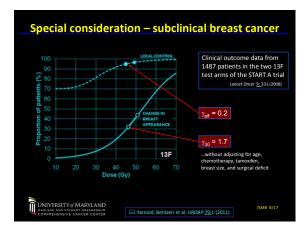




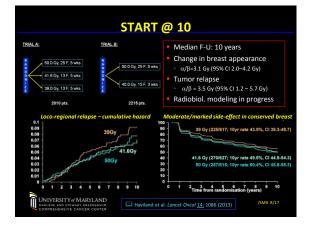


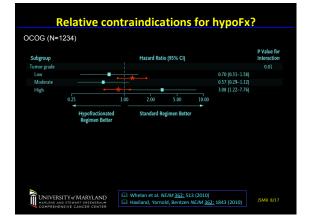
The Fowler Phenomenon – Jack's legacy

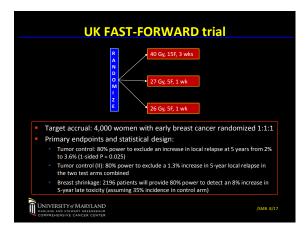
Thank you, Jack.

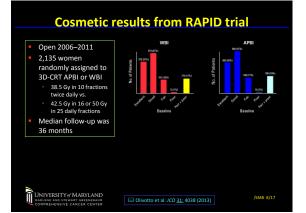

It was a great privilege to know you and to work in the same field as you.

You made all of us better scientists.




Ellis's assumptions (1967) "The healing of skin epithelium depends on the condition of the underlying connective tissue stroma" "Apart from bone and brain, connective tissues throughout the body are similar" "Within and around a malignant tumour normal connective tissue elements make up the stroma" "Therefore apart from bone and brain, the tumour dose limited by the moral tissue tolerance dose, could be based on skin tolerance"





12

_

δ_p : dose	e recovered per day o	lue to proliferation
Study	Time factor IV, Fixed, 95% CI	Time factor IV, Fixed, 95% Cl
Miralbell 2011	0.34 [0.21, 0.47]	
Thames 2010	0.24 [0.03, 0.45]	
Total (95% CI)	0.31 [0.20, 0.42]	•
Heterogeneity:	$P = 0.42 : ^2 = 0\%$	
Test for non-zero tim	ne factor: P < 0.00001	-0.5 0 0.5 1 Time factor, Gy/day
This could potential schedules	ly explain some of the effec	t of short, hypo-fractionated
	timates would increase	
\Rightarrow reduce	the effect of some hypo-fra	actionated schedules currently tried