Application of computational human phantoms and Monte Carlo methods in normal tissue dose reconstructions

> Choonik Lee, PhD, DABR 8/3/2017

WE-AB-FS1 - The Role of Physics in Long Term Epidemiological Studies of Pediatric Radiotherapy Patients

Disclosure

 Choonik Lee is supported in part by following funding sources NIH-DHHS-US-17-PAF02982
 NIH-DHHS-US-14-PAF04922

- Varian medical system, Inc

Collaborators

NCI / DCEG / REB Choonsik Lee, PhD Matthew Mille, PhD Gleb Kuzmin, BS Keith Griffin, MS Elimetry Machine PA

- · Elizabeth Mosher, BA
- East Carolina University Jae Won Jung, PhD
 Chris Pelletier, BS
 Rasha Makkia, BS

ATION ONCOLOGY

- Northwestern Medical Center
 John Kalapurakal, MD
 Mahesh Gopalakrishnan, MS
- Massachusetts General Hospital
 Harald Paganetti, PhD
 Jungwook Shin, PhD
- University of Maryland
 Ulrich Langner, PhD

Contents / Learning Objectives

- Evolution of anthropomorphic computational phantoms
- Choice of dose calculation engines Commercial TPS vs. general purpose Monte Carlo code
- Computational phantoms for therapy studies
 - When do we need phantoms?
 - DICOM RT ready computational phantoms
 - Patient-phantom merge (APE phantoms)
- Example application

ADIATION ONCOLOGY AAPM 2017

Background

Physical phantoms

- Simple material composition
 Coupled with detectors (TLDs, ion-chamber,
- etc) Point dose (not average dose)
- · Subject to various measurement uncertainties

Background

- Computational phantoms
 Digital equations / images
 Coupled with Monte Carlo transport code
 Requires accurate radiation source modeling
 Free-from setup/measurement uncertainties
 Batch calculation can be performed

Computational Human Phantoms

Computational Human Phantoms

Computational Human Phantoms

Model	Age and sex	Height (cm) / weight (kg)	Covered area	Images	Subject
Zubal Phantom	Adult	NA / 70.3	Head and torso	CT	Patient
NORMAN	Adult	176 / 73	Whole	MRI	
Golem	38-yr	176 / 68.93	Whole		Patient
VIP-man	38-yr	186 / 104.277	Whole	Color photo	Cadaver (VHP)
Otoko	Adult	170 / 65	Whole		
Visible-human	38-yr	125 / 87.8 (180 / 103.2)	Knees and up		Cadaver (VHP)
Frank	48-yr	96.5/65.4	Head and torso		Patient
MAX	Adult	175.3/74.65	Whole		Patient
KRMAN	28-yr	172 / 65	Whole	MRI	Volunteer
Nagaoka man	22-yr	172.8 / 65.0	Whole	MRI	Volunteer
KRMAN-2	33-yr	175 / 70	Whole	PET-CT	Volunteer

Computational Human Phantoms

2nd generation human phantoms

Computational Human Phantoms

Computational Human Phantoms

Body size-specific phantoms

Body size significantly varies among patients at the same age
Radiation dose depends on age and body size

Extended Phantom Library

- BMI distribution grid developed from US CDC survey data
- Body size-dependent phantoms developed by deforming the reference phantoms

Extended Phantom Library

Accelerated Monte Carlo (XVMC)

Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm

Item algorithm
Items algorithm

Key words: Monte Carlo simulations, 3D dose calculation, photon beam, tissue inhor

Comparison of peripheral dose calculation

- Simple water box phantom
 - Homogenous water phantom
 Simple square fields Varian 6MV LINAC
 - Calculated with commercial TPS (AAA, AcurosXB v13.6)
 - Monte Carlo codes XVMC and EGSnrc
 - Verification measurement Ion chamber + water (in-field) + solid water (out of field) phantoms*

*Owrangi et al (2016) JACMP

Comparison of peripheral dose calculation

- Simple chest phantom
 Heterogeneous phantom with body, lung, and heart
 Simple tangent fields with 6MV segments (to simulate left breast Tx)
 Calculated with commercial TPS (AAA, AcurosXB v13.6)
 Monte Carlo codes XVMC and EGSnrc

Application of phantom for therapy studies • Different scenarios

Phantom-assisted dose reconstruction

Conversion of NURBS-based phantom into DICOM-RT

Phantom to DICOMRT conversion

Phantom-patient merging

- Fully automated merging process
 BMI-matched phantom augments partial patient CT based on skeleton map
 Phantom dimension adjusted to match with patient
- Advantage of using accurate in-field anatomy + alternate anatomy for peripheral dose estimation

Anatomically Predictive Extension (APE) phantom

Phantom-patient merging

Dosimetric comparison of full patient / full reference phantom / APE

Phanto	m-patient	merging:	dose	comparison

A. Chest Irr	adiation	1													
	Pat	ient 169	-68	Pat	ient 180	-86	Pati	ent 193-	104	Pat	ient 176	-90	Pat	ient 162	-78
Organ		BMI=24			BMI=27			BMI=28			BMI=28			BMI=30	
	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient
Heart	59.120	66.844	66.751	59.120	61.730	61.770	59.120	62.005	62.009	59.120	61.376	61.499	59.120	65.404	65.299
Lung Left	15.249	19.207	19.167	15.249	18.506	18.493	15.249	15.245	15.245	15.249	17.223	17.232	15.249	19.443	19.762
Lung Right	14.868	13.167	13.157	14.868	13.021	13.027	14.868	12.857	12.858	14.868	12.801	12.803	14.868	13.189	13.415
Liver	2.849	7.779	8.347	2.849	2.622	2.005	2.849	2.806	2.184	2.849	5.848	4.067	2.849	10.372	8.629
Stomach	2.620	6.143	6.121	2.620	2.890	2.890	2.620	2.746	2.552	2.620	2.882	3.689	2.620	6.354	7.117
Bladder	0.021	0.021	0.030	0.021	0.036	0.018	0.021	0.019	0.020	0.021	0.027	0.020	0.021	0.029	0.027
Prostate	0.010	0.011	0.019	0.010	0.018	0.010	0.010	0.010	0.015	0.010	0.014	0.013	0.010	0.015	0.018
											4	Absolute	Percent	Differe	nce
													< 10%		
Kuzmin	et al. (mo	inuscrip	it in prep	aration)									10 - 25 9	6	
													> 25 %		
RADIA	TION ONC	OLOGY										_		_	_

Phantom-patient merging: dose comparison

B. Prostate	Irradiati	on													
	Pat	ient 169	-68	Pat	ient 180	-86	Pati	ent 193-	104	Pat	ient 176	-90	Pat	ient 162	-78
Organ		BMI=24			BMI=27			BMI=28			BMI=28			BMI=30	
	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient	Ref.	APE	Patient
Prostate	69.289	69.690	69.634	69.289	69.251	69.251	69.289	69.972	69.944	69.289	69.779	69.758	69.289	69.370	69.61
Bladder	31.946	61.215	61.207	31.946	45.380	45.371	31.946	66.740	66.753	31.946	56.410	56.409	31.946	60.649	60.68
Stomach	0.044	0.050	0.062	0.044	0.046	0.038	0.044	0.095	0.089	0.044	0.046	0.043	0.044	0.066	0.05
Liver	0.038	0.051	0.060	0.038	0.049	0.048	0.038	0.086	0.082	0.038	0.074	0.069	0.038	0.063	0.053
Heart	0.011	0.013	0.024	0.011	0.016	0.012	0.011	0.022	0.019	0.011	0.018	0.016	0.011	0.019	0.023
Lung Left	0.008	0.012	0.024	0.008	0.011	0.013	0.008	0.015	0.019	0.008	0.014	0.015	0.008	0.017	0.019
Lung Right	0.008	0.012	0.018	0.008	0.011	0.012	0.008	0.015	0.018	0.008	0.013	0.014	0.008	0.017	0.018
						-						Absolute	Percent	t Differe	ence
													< 10%		
Kuzmin e	et al. (mo	nuscrip	t in prep	arationj									10 - 25	%	
PADIA											100		> 25 %		

Retrospective Study Using NWTS Cohort

- Wilms Tumor Cancer of the kidney that occurs most often in children
 - Approximately 500 cases diagnosed in U.S. annual
 - o 75% cases occur in otherwise normal children
 - o Highly responsive to treatment (5 yr. survival > 90%) \rightarrow ideal for late-effects research
- National Wilms Tumor Study (NWTS)

ION ONCOLOGY

 Solared in 2505 on inprove survival and study long-term outcomes
 S002 patients have contributed information to Late Effects Study (2606 patients with >20 years past diagnosis)

Retrospective Study Using NWTS Cohort

- NCI-funded dose reconstruction study to conduct late-effects study with organ dose reconstruction
- Pilot study
- 20 Simulated treatment plans (10 male, 10 female pediatric patients)
 Surrogate CT (not actual patient)provided from Quality Assurance Review Center (QARC)
- OAR contoured and treatment plan created on paired set of 20 surrogate patient CTs and 20 matching phantoms - following treatment record based on the anatomical landmarks
- TPS dose and MC dose compared

RADIATION ONCOLOGY

Mean Organ Dose: patient CT vs Phantom

Difference	Deviation	Difference	
1.4%	10.9%	32.3%	
5.9%	19.7%	46.6%	The second
1.8%	14.7%	53.4%	
-6.4%	26.7%	46.2%	A A
-17.2%	22.78%	57.8%	
-5.5%	9.8%	40.0%	Contra I
13.6%	68.6%	192.7%	
and phantom ture contourin	s agreed quite	well for most organs	
	1.4% 5.9% 1.8% -6.4% -17.2% -5.5% 13.6% and phantom ture contourin	1.4% 10.9% 5.9% 19.7% 1.8% 14.7% -6.4% 26.7% -17.2% 22.78% 13.6% 68.6% and phantoms agreed quite- ture contouring pending	1.4% 10.9% 32.3% 5.9% 19.7% 46.6% 1.8% 14.7% 53.4% -6.4% 26.7% 46.2% -17.2% 22.78% 57.8% -5.5% 9.8% 40.0% 13.6% 68.6% 192.7% and phantoms agreed quite well for most organs ture contouring pending 56.6% 192.7%

Organ	Mean Difference	Standard Deviation Difference	Max Absolute Value Difference
Heart	-1.8%	3.1%	11.9%
Thyroid	-18.8%	25.4%	70.1%
Kidneys (L&R)	-0.4%	2.8%	11.1%
Testes	-30.0%	13.1%	48.3%
Lungs (Avg)	-3.0%	4.3%	17.3%
Ovaries (L&R)	3.4%	8.3%	32.7%
Uterus	-0.6%	8.6%	27.9%

Summary

- Computational human phantoms have evolved from simple form to realistic and flexible form
- Workflow for organ dose in therapy patients developed based on accelerated MC method and phantoms
- The new method applied to epidemiological investigations
- Improved dosimetry is hypothesized to provide more accurate risk analysis in epidemiological studies

Thank you for your attention!