NAVIGATION IN BRACHYTHERAPY

Challenge #1: Data Acquisition • Fast, practical, accurate

Challenge #2: Quality Assurance • Enhanced independent plan check

Challenge #3: Automatic Digitization • A tricky registration problem

Challenge #4: Adaptive Therapy and Navigation · Implant displacement, deformation, etc.

Antonio L. Damato, PhD

DISCLOSURES

- Travel grant from Elekta (2015) related to electromagnetic tracking

- Some devices discussed in this talk are not FDA approved

NAVIGATION IN BRACHYTHERAPY

Challenge #1: Data Acquisition • Fast, practical, accurate

Challenge #2: Quality Assurance • Enhanced independent plan check

Challenge #3: Automatic Digitization
• A tricky registration problem

Challenge #4: Adaptive Therapy and Navigation
- Implant displacement, deformation, etc.

OPTICAL NAVIGATION SYSTEMS

http://bluebelttech.com/

Damato, 2017-08-02

ELECTROMAGNETIC TRACKING

Bert et al., J Contemp Brachytherapy2016

ACTIVE MR TRACKING

Wang et al., Magn Reson Med. 2015 May; 73(5):1803-11

Damato, 2017-08-01

Damato, 2017-08-01

TRACKING: DATA QUALITY

Summary: Data acquisition

Accurate, fast data acquisition is possible:

- Manual data acquisition is possible
- For some applications, for some technologies, robotic delivery is advantageous

Evaluating a tracking system / application:

- Practical / safety considerations
- Evaluation of noise / error (average, max)
- Noise / error in clinical practice
- Absolute vs. relative registration

NAVIGATION IN BRACHYTHERAPY

• Fast. practical. accurate

Challenge #2: Quality Assurance • Enhanced independent plan check

Challenge #3: Automatic Digitization
• A tricky registration problem

Challenge #4: Adaptive Therapy and Navigation

• Implant displacement, deformation, etc.

Damato, 2017-08-01

TRACKING FOR QUALITY ASSURANCE

Quality item		Detectability		EMT coordinate	Error probability and effect [23]		
		IVD Imaging EMT		system	Probability of error	Effect	
Source calibration	1	×	×	-	Low	Low-high	
Afterloader source positioning and dwell time (non-patient specific)	1	×	(✔)	E	-	-	
Afterloader malfunction	1	×	(✔)	E	Low	Low-high	
Patient identification	×	1	(🗸)	E/F	Low	High	
Correct treatment plan	1	×	1	E	Low	High	
Intra- and interfraction organ/applicator movement	1	1	1	E/F/A	-	-	
Applicator reconstruction	1	1	1	E	Intermediate	Low-intermediate	
Applicator length/source indexer length	1	×	1	E/F	Intermediate	Low-high	
Source step size (patient specific)	1	×	1	E	Low	High	
Interchanged guide tubes	1	×	1	E/F	Intermediate	Low-high	
Recording of dose	1	×	×	-	-	-	
					Bert et al.; J Contemp Brachytherapy 2016		

Damato, 2017-08-01

TRACKING FOR QUALITY ASSURANCE¹

Challenge: Digitization QA

Catheter digitization performed manually:

- Based on visibility in CT, MR or US, which may be poor
 - FMEA2: detection of errors "unlikely"
 - FMEA2: high risk-priority number
- 20% of medical events (NRC) related to digitization

Goals:

- Tracking for digitization QA
- Tracking for treatment verification

¹ Damato et al.; Med. Phys. 2014 ² Wilkinson et al.; Brachytherapy 2013

EM TRACKING FOR QUALITY ASSURANCE

Summary: Digitization QA

Enhanced plan QA possible:

- Low noise (0.6 mm), low offset (< 0.6 mm) data

 - 100% specificity/sensitivity
 Can be expanded to catheter length / attachment checks

Clinical validation underway (mostly EM):

- Phantom experiments
- Preliminary: gynecologic brachytherapy
- Prostate brachytherapy
- Breast brachytherapy

NAVIGATION IN BRACHYTHERAPY

Challenge #1: Data Acquisition Fast, practical, accurate

Challenge #2: Quality Assurance - Enhanced independent plan check

Challenge #3: Automatic Digitization - A tricky registration problem

Challenge #4: Adaptive Therapy and Navigation · Implant displacement, deformation, etc.

EM TRACKING FOR AUTOMATIC DIGITIZATION

Damato, 2017-08-01

REGISTRATION MATTERS

<u>Tracker accuracy</u>: • < 1mm average

- > 1mm maxim#m
- Total accuracy: * Simulations in phantoms Initial work on clinical validation External fiducials
 - 3-4 mm average
 - 5-6 mm maximum
 - unreliable

Damato, 2017-08-01

ALTERNATIVE APPROACH: SEMI-AUTOMATIC DIGITIZATION

EM TRACKING FOR AUTOMATIC DIGITIZATION IN TRUS

	In-plar	In-plane discrepancy (mm)			Out-of-plane discrepancy (mm)		
Calibration in	Mean	Standard deviation	Maximum	Mean	Standard deviation	Maximum	
low distortion	0.4	0.2	1	0.8	0.4	1.7	
low disionion	1	0.2	1.5	1.1	0.8	1.9	
environment	0.3	0.2	1.1	1.1	0.8	1.9	
	0.6	0.3	1.5	0.4	0.2	0.6	

Damato, 2017-08-01

Damato, 2017-08-01

EM TRACKING FOR AUTOMATIC DIGITIZATION IN TRUS

	In-plane discrepancy (mm)			Out-of-plane discrepancy (mm)		
Updated	Mean	Standard deviation	Maximum	Mean	Standard deviation	Maximum
calibration in	0.4	0.2 0.2	1 1.5	0.8 1.1	0.4 0.8	1.7 1.9
distorting	0.3	0.2	1.1	1.1	0.8	1.9
environment	0.6	0.3	1.5	0.4	0.2	0.6

EM TRACKING FOR AUTOMATIC DIGITIZATION

Challenge: Automatic Digitization

Registration of EM and CT/MR frame-of-reference:

- All dwell positions: for QA only
- External markers: less precise, unreliable
- A priori-registration: unfeasible
- User input required

Goals:

- Fast, accurate catheter digitization
- Minimal user intervention

<text><section-header>

Catheter Trajectory Reconstruction by MR Tracking

Damato, 2017-08-01

Damato, 2017-08-01

MRI TRACKING FOR AUTOMATIC DIGITIZATION

TABLE II. Comparison between MRTR-generated catheter trajectories and the image-based digitization (CT and MRI). Equally spaced dwell positions were generated along each trajectory by interpolation, and the corresponding dwell points from the different methods were compared. d_x , d_y , and d_z represent differences along each axis. d_{3D} represents the 3D distance between corresponding dwell points.

	d_x (mm)	d_y (mm)	d_z (mm)	$d_{\rm 3D}({\rm mm})$
MRTR vs MRI	0.3 ± 0.4	-0.1 ± 0.2	1.3 ± 0.5	1.5 ± 0.7
MRTR vs CT	0.4 ± 0.2	-0.6 ± 0.2	0.2 ± 0.6	0.7 ± 0.4

NAVIGATION IN BRACHYTHERAPY

Challenge #1: Data Acquisition
• Fast, practical, accurate

Challenge #2: Quality Assurance • Enhanced independent plan check

Challenge #3: Automatic Digitization
A tricky registration problem

Challenge #4: Adaptive Therapy and Navigation - Implant displacement, deformation, etc.

MRI-Assisted Workflow

Damato, 2017-08-01

Damato, 2017-08-01

End-to-end phantom experiment

CT: implant identification

MR: tumor identification

MSKCC MRI-Guided Workflow

Damato, 2017-08-01

Damato, 2017-08-01

MSKCC MRI-Guided Workflow

Utrecht MRI-Guided Workflow

Utrecht MRI-Guided Workflow

Damato, 2017-08-01

Damato, 2017-08-01

Why not MRI-only?

Logistics

- Lack of real-time feedback during MRI needle positioning
- Difficult visualization of the needles
- Long scanning time

Planning

- Long planning times due to needles reconstruction
- Uncertainties in reconstruction can affect plan quality
- Use of fusions introduces registration uncertainties

Wish list

- Real-time, clear visibility during implantation
- Automatic needle path detection

Damato, 2017-08-01 Active MR Tracking: Needle Identification

-· Coils mounted on stylet Capture location along ٠ length of needle User identifies channels Controls MR scan plane through tip of needle.

Needle Guided MR Resampling of Initial Scan

Courtesy: Robert Cormack

Courtesy: Luc Beaulieu **EM-assisted US HDR brachytherapy**

CONCLUSION

EM-tracking:

- QA: digitization and more if mounted on afterloader
- QA: software/hardware error detection system
- Digitzation/navigation presents a registration problem
- In pre-clinical phase for US-based brachytherapy
- Clinical use ongoing for breast brachytherapy

Active MRI tracking:

- Demonstrated clinical utility in assisting implantation
- Custom device requiring ad-hoc development

Acknowledgements

MSKCC:

Michael Zelefsky Marisa Kollmeier Sean Mc Bridge Kaled Alektiar Gil Cohen Johnny Chiu Karen Episcopia Nitin Mathur Laszlo Voros **Johns Hopkins** Akila Viswanathan

Brigham and Women's Hospital Robert Cormack

Sunnybrook Ananth Ravi; Aman Taggar