

Disclosure

Research equipment and software have been provided by Elekta Brachytherapy and Varian Medical Systems.

Dr. Rivard serves as a consultant to CivaTech Oncology and a minor stakeholder for Advanced Radiation Therapy, LLC

Learning Objectives

- current state-of-the-art of MBDCAs for BT dosimetry
- MBDCAs for dosimetry of directional-modulated sources and intensity-modulated BT

Example Dosimetry Parameter Dataset

1	r [cm]	g _L (r)	g _P (r)	r [cm]	phi(r)	F(r,8)	0	10	20	30	40	50	60	70	80
2	0.10	0.990	0.582	0.25	1.164	0.05							1.067	0.996	0.985
3	0.25	1.021	0.889	0.5	0.973	0.075					1.050	1.006	0.994	0.996	0.996
4	0.50	1.030	0.998	1.0	0.933	0.1				1.046	0.996	0.990	0.993	0.988	0.999
5	1.00	1.000	1.000	1.5	0.931	0.15			1.039	0.978	0.958	0.977	0.988	0.987	0.996
6	1.50	0.943	0.949	2.0	0.931	0.2		0.987	0.921	0.940	0.960	0.975	0.984	0.988	0.997
- 7	2.00	0.872	0.879	2.5	0.932	0.25	0.494	0.574	0.785	0.899	0.943	0.967	0.986	0.995	1.000
8	2.50	0.795	0.803	3.0	0.934	0.5	0.610	0.513	0.679	0.808	0.892	0.944	0.974	0.990	0.997
9	3.00	0.717	0.724	3.5	0.935	1	0.580	0.561	0.705	0.813	0.885	0.933	0.967	0.987	0.997
10	3.50	0.643	0.650	4.0	0.937	2	0.652	0.626	0.743	0.830	0.893	0.934	0.967	0.987	0.997
11	4.00	0.573	0.579	4.5	0.938	5	0.690	0.700	0.789	0.854	0.905	0.941	0.968	0.986	0.996
12	4.50	0.508	0.513	5.0	0.938	10	0.709	0.742	0.815	0.872	0.912	0.947	0.972	0.990	0.997
13	5.00	0.448	0.453	6.0	0.939										
14	6.00	0.347	0.351	7.0	0.942	Λ=	1.011								
15	7.00	0.265	0.268	10.0	0.948	L = 3.7	7 mm or	0.37 c	m						
16	8.00	0.201	0.203												
17	9.00	0.151	0.153												
18	10.00	0.114	0.115												

Conventional TPS Fails to Accurately Calculate Brachytherapy Dose

air \neq water?

tissue ≠ water?

contrast impact?

source superposition?

source shielding?

radiation scatter?

BT Dose Calculation Methods										
		Method	Characteristics	Remarks						
		Monte Carlo	explicit particle transport simulation + accurate – noisy dose distributions	standard source characterization and research tool, clinical use under development						
model based		analytic solvers	solves transport equations deterministic methods + accurate – discretization effects	standard tool in Nuc engin, clinical implementation (GBBS) only for HDR ¹⁹² lr	deling					
niouei baseu		scatter kernel methods Collapsed Cone based on PSS data	implicit particle transport + accurate - discretization effects - small systematic errors	potenital for parallel hardware, e.g. GPU, clinical use under development	cs mo					
		TG-43 hybrid methods	+ much more accurate than TG-43 + fast, available with current TPS - highest accuracy not obtained	can sevrve as dose engine within optimization loops, sensitive geometry assumptions	ohysi					
factor based 🔫		Parameterization of Primary and Scatter Separation (PSS) data	no particle transport + fast, robust radial extrapolation – neglect effects from shields, finite patient, heterogeneties	same source data as advanced algorithms	xplicit					
		TG-43	no particle transport + fast, familiar, permits hand calcs – neglect effects from shields, finite patient, heterogeneties	current clinical workhorse	ê					

Relevance of MBDCA Influence

- HDR ¹⁹²Ir breast tissues (–10% to –30%), bone (+5% to +10%)
- HDR eBT breast tissues (-10% to -70%), bone (+25% to +800%)
- HDR ¹⁹²Ir GYN tissues (–3% to –10%) much lower with shielding
- HDR ¹⁹²Ir prostate tissues (-3% to -10%)
- LDR ¹²⁵I prostate tissues (–5% to –10%) much lower with Ca
- LDR ¹²⁵I eye plaque tissues (-10% to -92%), bone (+15% to +500%)

Advanced Collapsed Cone Engine: ACE

- Implementation only for ¹⁹²Ir
 - 1. CPE assumption : $D_{prim} \rightarrow K_{coll}$
 - Primary dose analytical (from fluence)
 - Ray-tracing with scaling (heterogeneities!)
 - Some correction factors (volume, anisotropy, ...)
 - 2. First scatter from primary : $S_{1c} = \left(\frac{\mu \mu_{en}}{\mu_{en}}\right) D_{prim}$
 - 3. Multiple scatter components from D_{1sc} .
 - Exponential parametrization of MC point kernels

Russell & Ahnesjö 1996 PMB 41; Carlsson & Ahnesjö 2000 Med Phys 27; Carlsson & Ahnesjö 2000 PMB 45; Carlsson & Ahnesjö. 2003 Med Phys 30; Russell et al 2005 Med Phys 32; Carlsson Tedgren & Ahnesjö 2008 Med Phys 35. courtesy Firas Mourtada

Linear Boltzmann Transport Equation

In this section, we describe the general methods used in Attila^{1M} for neutral particle transport. The methods used for charged particle transport will be described in a future article. AttilaTM solves three-dimensional linear Boltzmann transport equation, the governing equation for radiation transport¹. For volume, V, with surface, δV , the linear Boltzmann transport equation, along with vacuum boundary conditions, is given by:

$$\hat{\Omega} \cdot \bar{\nabla} \Psi(\vec{r}, E, \hat{\Omega}) + \sigma_t(\vec{r}, E) \Psi(\vec{r}, E, \hat{\Omega}) = Q^{scat}(\vec{r}, E, \hat{\Omega}) + Q^{ax}(\vec{r}, E, \hat{\Omega}), \ \vec{r} \in V$$
(1a)

$$\Psi(ec{r},E,\hat{\Omega})=0,\;ec{r}\in\delta\!V,\;\hat{\Omega}\cdotec{n}<0\;.$$

Here $\Psi(\vec{r}, E, \hat{\Omega})$ is the angular flux at position, $\vec{r} = (x, y, z)$, energy, *E* , direction,

 $\hat{\Omega} = (\mu, \eta, \xi)$, and \vec{n} is the normal vector to surface δV . The first term on the left hand side of Eq. (1) is termed the streaming operator. The second term on the left hand side of Eq. (1a) is termed the collision operator, where $\sigma_t(\vec{r}, E)$ is the macroscopic total cross

section. The right had side of Eq. (1a) includes the source terms, where $Q^{scat}(\vec{r}, E, \hat{\Omega})$ is the scattering source and $Q^{ex}(\vec{r}, E, \hat{\Omega})$ is the extraneous source. The scattering source is explicitly given as:

$$Q^{scat}(\vec{r}, E, \bar{\Omega}) = \int_{0}^{\infty} dE' \int_{4\pi} \sigma_{s}(\vec{r}, E' \to E, \hat{\Omega} \cdot \hat{\Omega}') \Psi(\vec{r}, E', \hat{\Omega}') d\hat{\Omega}', \qquad (2)$$

courtesy Firas Mourtada

(1b)

TG-43 Hybrid Methods

- use on FDA/CE approved TG-43-based BT TPS
- no 3D dose kernel entry (yet)
- only for rigid applicators/sources
- clinical applications for TG-43 hybrid approach –vaginal cylinder (HDR ¹⁹²Ir)
 - -skin applicators Leipzig and Valencia (HDR ¹⁹²Ir)
 - –eye plaques (LDR ¹⁰³Pd, ¹²⁵I, ¹³¹Cs)
 - -AccuBoost breast BT boost/APBI (HDR ¹⁹²Ir)
 - -CivaSheet (LDR ¹⁰³Pd) directional source

Med. Phys. 36, 1968-1975 (2009)

Summary

- several choices available for advanced BT dose calcs
- MBDCAs are helpful for conventional source dosimetry, and required for dosimetry of directional modulated sources and intensity-modulated BT
- field is advancing through enhanced infrastructure, practice standardization, and image-guided BT