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What is Machine Learning? 

▶ ML is the science (art?) of discovering actionable 
models/patterns/knowledge directly from data. 

 

▶ ML methods try to: 
– Make as few assumptions and be as computationally efficient as 

possible (vis-à-vis traditional statistical methods) 

– Be as unbiased w.r.t. current knowledge as possible (vis-à-vis 
traditional bioinformatics and computational biology methods) 

 

▶ Several types of (machine) learning: 
– Supervised: Classification, regression. 

– Unsupervised: Clustering, anomaly detection. 

– Others: Semi-supervised, ensemble, deep, feature selection, spatio-
temporal. 
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Supervised learning 
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Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
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Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
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Evaluation of supervised ML models 
▶ Evaluation setups: 

– Training-test sets 

– Cross-validation 

 

▶ Evaluation metrics: 

– Accuracy 

– ROC Curve 
• Shows relationship between True Positive  

Rate (Sensitivity) and False Positive Rate 
(1-Specificity) across a variety of thresholds 
applied to classifier output scores. 

• Area Under the Curve (AUC) 
 Ideal: AUC = 1 

 Random: AUC = 0.5 

• Model with higher AUC generally considered better 

 

▶ More specialized metrics needed for unbalanced data sets 
– Typical biomedical problems (e.g. healthy-vs-diseased) are unbalanced 

– Right metrics to use: Precision-Recall-Fmeasure 

 

▶ Excellent review: Lever et al, Nature Methods, 2016. 
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Unsupervised learning: Clustering 

▶ Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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Why should we care? Because we are 

awash in biomedical data 
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Abundant data and ML provide opportunities to address 

problems related to personalized/precision medicine 

 ▶ Supervised learning 

– Discovery of factors affecting/related to health/disease (biomarkers) 

• Genetic/genomic factors 

• Environmental factors (exposome) 

• Gene X Environment interactions 

– Prediction of disease phenotypes, progression, survival rates etc. 

• Imaging data (radiomics, deep learning etc.) 

• Genetic, EMR and other data types 

– Prediction of drug sensitivity/effectiveness and adverse/side effects 

 

▶ Unsupervised learning 

– Disease subtype discovery 

– Deconvolution of cell types in a mixture 

– Drug repositioning and discovery of effective drug combinations 

– Clustering of (disease-related) gene/proteins into functions/pathways etc. 
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Some applications of ML in  

biomedical problems 

Discovering gene expression biomarkers of diseases 
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Patient classification 

Several images taken from the web 
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Accurate diagnostic panel for (mild/moderate) asthma 
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Specificity of diagnostic panel to (mild/moderate) asthma 

vis-à-vis respiratory diseases with similar symptoms 
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Pandey et al, bioRxiv 145771, 2017 

Discovering air pollutant combinations affecting 

children’s health 
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Stingone et al, Environmental Pollution, 2017 

"You Can’t Change Your Genes, but You Can Change the Environment: How the 

Environment Affects Your Health”: Dr. Linda S. Birnbaum, Director, National Institute of 

Environmental Health Sciences and National Toxicology Program 
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Pollutant combinations can help define at-risk 

population profiles 
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Stingone et al, Environmental Pollution, 2017 

Radiomics and ML for tumor classification 

 

▶ Data set: 68 prostate tumor  

captured using mpMRI (ADC  

and T2) 

– 54 low and intermediate 

– 14 highly aggressive tumors 

 

▶ 116 radiomics features derived 

from images: 

– Mostly texture-based (Histogram 

analysis, GLCM, GLDM and 

Fourier analysis) 

 

 

 

▶ Goal: Can supervised ML methods be applied to this data set to improve tumor 

classification by identifying a combination of radiomics features? 

 

 

ML methodology and current results 

Bino Varghese and Vinay Duddalwar (USC) 
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Challenges with biomedical ML 

▶ Type and amount of data being analyzed should be relevant and 

representative for the target problem. 

 

▶ Interpretability of ML models: “Block Box” characterization 

– Much of this comes from incomplete understanding of how ML methods work 

 

▶ Data issues: 

– Noise 

– Missing data 

– Incompatibility of data from different sources 

• Same data type: Different scales/distributions (batch effects, normalization etc.) 

• Different data types: Different representations, not always clear how to integrate 

– Integral to any data analysis, not just ML 

• Best practices should be followed, unless better solutions available 

Summary 

▶ ML methods of several types hold great potential in the 
data-rich era of biomedical sciences to address 
challenging problems and derive actionable knowledge 
directly from data. 

 

▶ Several useful applications: 
– Development of diagnostic gene expression panels for diseases (e.g. 

asthma) 

– Identification of air pollutant combinations that affect children’s health 

– Tumor classification based on radiomics data derived from mpMRI 

images 

 

▶ Substantial challenges remain and efforts are being 
made! 
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