Machine learning for biomedical problems, including radiomics and (radio)genomics

What is Machine Learning?

- ML is the science (art?) of discovering actionable models/patterns/knowledge directly from data.
- ML methods try to:
 - Make as few assumptions and be as computationally efficient as possible (vis-à-vis traditional statistical methods)
 - Be as unbiased w.r.t. current knowledge as possible (vis-à-vis traditional bioinformatics and computational biology methods) _
- · Several types of (machine) learning:
 - Supervised: Classification, regression.
 Unsupervised: Clustering, anomaly detection.

 - Others: Semi-supervised, ensemble, deep, feature selection, spatio-temporal. _

Supervised learning

Evaluation of supervised ML models

Unsupervised learning: Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Why should we care? Because we are

Abundant data and ML provide opportunities to address problems related to personalized/precision medicine

Supervised learning

- Discovery of factors affecting/related to health/disease (biomarkers)
 - Genetic/genomic factors
 Environmental factors (exposome)
 - · Gene X Environment interactions
- Prediction of disease phenotypes, progression, survival rates etc.
 Imaging data (radiomics, deep learning etc.)
 Genetic, EMR and other data types
- Prediction of drug sensitivity/effectiveness and adverse/side effects

Unsupervised learning

- Disease subtype discovery
- Deconvolution of cell types in a mixture
- Drug repositioning and discovery of effective drug combinations
- Clustering of (disease-related) gene/proteins into functions/pathways etc.

Some applications of ML in biomedical problems

Feature ئىر ئىر Classifier (Gene) RNA-Seq Selector ø °° Healthy/diseased patients' gene Wrapped classification (predictive) model learning expression data 000 Diagnostic panel (e.g. Patient classification MammaPrint & Oncotype DX Several images taken from the web

Discovering gene expression biomarkers of diseases

 $\mathbf{t}_{1} = \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{2}$

Specificity of diagnostic panel to (mild/moderate) asthma vis-à-vis respiratory diseases with similar symptoms

Discovering air pollutant combinations affecting children's health

"You Can't Change Your Genes, but You Can Change the Environment: How the Environment Affects Your Health": Dr. Linda S. Birnbaum, Director, National Institute of Environmental Health Sciences and National Toxicology Program

Pollutant combinations can help define at-risk population profiles

ançê L	Nudinai Study, Birth
estimated ambient on of isophorone	
	<0.42 mJm ³
	20.0
	33.5
	27.2
	19.3
	19.7
	4.6
	11.8
	7.8
	25.9
	14.1
	23.0
	58.4
n,	2017

Radiomics and ML for tumor classification

c

5.,

- Data set: 68 prostate tumor captured using mpMRI (ADC ٠ and T2)
 - 54 low and intermediate14 highly aggressive tumors
- 116 radiomics features derived from images:
 - Mostly texture-based (Histogram analysis, GLCM, GLDM and Fourier analysis)

٠ Goal: Can supervised ML methods be applied to this data set to improve tumor classification by identifying a combination of radiomics features?

ML methodology and current results

Bino Varghese and Vinay Duddalwar (USC)

Challenges with biomedical ML

- Type and amount of data being analyzed should be relevant and ۲ representative for the target problem.
- Interpretability of ML models: "Block Box" characterization - Much of this comes from incomplete understanding of how ML methods work
- Data issues:
 - Noise
 - Missing data Incompatibility of data from different sources
 - Same data type: Different scales/distributions (batch effects, normalization etc.) · Different data types: Different representations, not always clear how to integrate - Integral to any data analysis, not just ML
 - · Best practices should be followed, unless better solutions available

Summary

- ML methods of several types hold great potential in the data-rich era of biomedical sciences to address challenging problems and derive actionable knowledge directly from data.
- Several useful applications:
 - Development of diagnostic gene expression panels for diseases (e.g. asthma)
 - Identification of air pollutant combinations that affect children's health
 - Tumor classification based on radiomics data derived from mpMRI images
- Substantial challenges remain and efforts are being made!

Acknowledgements

- To you for your attention and meeting and session organizers for the invitation
- ML method development: Sean Whalen, Ana Stanescu, Om P. . Pandey and other lab members at Mount Sinai
- Asthma: Supinda Bunyavanich (Mount Sinai)
- Air pollution and environmental health: Jeanette Stingone and ۲ Luz Claudio (Mount Sinai)
- Radiomics: Bino Varghese and Vinay Duddalwar (USC)
- Financial and technical support: NIH R01GM114434, P30ES023515, IBM Faculty Award and Mount Sinai Institute for Genomics & Multiscale Biology and Minerva supercomputing team.