Machine learning for biomedical problems, including radiomics and (radio)genomics

Gaurav Pandey
Department of Genetics and Genomic Sciences
Icahn Institute for Genomics and Multiscale Biology
Icahn School of Medicine at Mount Sinai, New York
http://research.mssm.edu/gpandey

What is Machine Learning?

- ML is the science (art?) of discovering actionable models/patterns/knowledge directly from data.

- ML methods try to:
 - Make as few assumptions and be as computationally efficient as possible (vis-à-vis traditional statistical methods)
 - Be as unbiased w.r.t. current knowledge as possible (vis-à-vis traditional bioinformatics and computational biology methods)

- Several types of (machine) learning:
 - Supervised: Classification, regression.
 - Unsupervised: Clustering, anomaly detection.

Supervised learning

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Learning algorithm

Induction

Learn Model

Deduction

Apply Model

Model
Evaluation of supervised ML models

- Evaluation setups:
 - Training-test sets
 - Cross-validation

- Evaluation metrics:
 - Accuracy
 - ROC Curve
 - Shows relationship between True Positive Rate (Sensitivity) and False Positive Rate (1-Specificity) across a variety of thresholds applied to classifier output scores.
 - Area Under the Curve (AUC)
 - Ideal: AUC = 1
 - Random: AUC = 0.5
 - Model with higher AUC generally considered better

- More specialized metrics needed for unbalanced data sets
 - Typical biomedical problems (e.g., healthy-vs-diseased) are unbalanced
 - Right metrics to use: Precision-Recall-Fmeasure

Unsupervised learning: Clustering

- Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

- Intra-cluster distances are minimized
- Inter-cluster distances are maximized

Why should we care? Because we are awash in biomedical data

- Several images taken from the web
Abundant data and ML provide opportunities to address problems related to personalized/precision medicine

- **Supervised learning**
 - Discovery of factors affecting/related to health/disease (biomarkers)
 - Genetic/genomic factors
 - Environmental factors (exposome)
 - Gene X Environment interactions
 - Prediction of disease phenotypes, progression, survival rates etc:
 - Imaging data (radiomics, deep learning etc)
 - Genetic, EMR and other data types
 - Prediction of drug sensitivity/efficacy and adverse/side effects

- **Unsupervised learning**
 - Disease subtype discovery
 - Deconvolution of cell types in a mixture
 - Drug repositioning and discovery of effective drug combinations
 - Clustering of (disease-related) gene/proteins into functions/pathways etc.

Some applications of ML in biomedical problems

Discovering gene expression biomarkers of diseases

![Diagram of gene expression biomarker discovery process]

- RNA-Seq → Healthy/diseased patients' gene expression data
- Feature (Gene) Selector → Classifier
- Wrapped classification (predictive) model learning
- Patient classification
- Diagnostic panel (e.g., MammaPrint & Oncotype DX)

Several images taken from the web
Accurate diagnostic panel for (mild/moderate) asthma

Specificity of diagnostic panel to (mild/moderate) asthma vis-à-vis respiratory diseases with similar symptoms

Discovering air pollutant combinations affecting children’s health

“You Can’t Change Your Genes, but You Can Change the Environment: How the Environment Affects Your Health”: Dr. Linda S. Birnbaum, Director, National Institute of Environmental Health Sciences and National Toxicology Program
Pollutant combinations can help define at-risk population profiles

Stigone et al, Environmental Pollution, 2017

Radiomics and ML for tumor classification

- Data set: 68 prostate tumor captured using mpMRI (ADC and T2)
 - 54 low and intermediate
 - 14 highly aggressive tumors

- 116 radiomics features derived from images:
 - Mostly feature-based (Histogram analysis, GLCM, GLDM and Fourier analysis)

- Goal: Can supervised ML methods be applied to this data set to improve tumor classification by identifying a combination of radiomics features?

ML methodology and current results

Bino Varghese and Vinay Duddalwar (USC)
Challenges with biomedical ML

- Type and amount of data being analyzed should be relevant and representative for the target problem.
- Interpretability of ML models: "Black Box" characterization
 - Much of this comes from incomplete understanding of how ML methods work
- Data issues:
 - Noise
 - Missing data
 - Incompatibility of data from different sources
 - Same data type: Different scales/distributions (batch effects, normalization etc.)
 - Different data types: Different representations, not always clear how to integrate
 - Integral to any data analysis, not just ML
 - Best practices should be followed, unless better solutions available

Summary

- ML methods of several types hold great potential in the data-rich era of biomedical sciences to address challenging problems and derive actionable knowledge directly from data.
- Several useful applications:
 - Development of diagnostic gene expression panels for diseases (e.g. asthma)
 - Identification of air pollutant combinations that affect children’s health
 - Tumor classification based on radiomics data derived from mpMRI images
- Substantial challenges remain and efforts are being made!

Acknowledgements

- To you for your attention and meeting and session organizers for the invitation 😊
- ML method development: Sean Whalen, Ana Stanescu, Om P. Pandey and other lab members at Mount Sinai
- Asthma: Supinda Bunyavanich (Mount Sinai)
- Air pollution and environmental health: Jeanette Stingone and Luz Claudio (Mount Sinai)
- Radiomics: Bino Varghese and Vinay Duddalwar (USC)
- Financial and technical support: NIH R01GM114434, P30ES023515, IBM Faculty Award and Mount Sinai Institute for Genomics & Multiscale Biology and Minerva supercomputing team.