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A few definitions...

Informatics [ The Discipline]

— “Informatics is the science of processing data for storage and retrieval;

information science as a field.”
"Big Data” [The Input]

— "Big Data is high-volume, high-velocity and/or high-variety informatic
assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and proc
automation.”- Gartner

Machine learning (“statistical learning”) [The Methodology]

— “Machine learning explores the study and construction of algorithms that ca
learn from and make predictions on data — such algorithms overcome follov
strictly static program instructions by making data-driven predictions or
decisions, through building a model from sample inputs.”

“Big Data”

“Big data is like teenage
sex: everyone talks about it,
nobody really knows how to
do it, everyone thinks
everyone else is doing it, so
everyone claims they are @
doing it too...and most don't
do it very well.”

— Dan Ariely
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Pessonalized treatment,

Data Source: improved quality and risk control

n individual patient
\(anmlmm recards)

Radiol med (2017) 122:458-463
DOI 10.1007/511547-016-0687-5

Types of Machine Learning
- Ataglance

Unsupervised Learning Reinforcement Learning

Rewards «—)

ot~ Jreoumis s o[ Jooums

Low granularity
Low cost/patient

Bigdata
opportunity

Population Health-Registry
Regional incidence
Environmental influences

requires al patients regionally

Quality Reporting
Disparities of care
Practice quality improvement.
Safety

requires all patients from participating practices
DecisionSupport Naber
Outcome/Toxicity prediction of
Individualized treatments patients

High granularity
High cost/patient  patienss
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LET'S SOLVE THIS PROBLEM BY
USING THE BIG DATA NONE

0 OF US HAVE THE SLIGHTEST
IDEA WHAT TO DO WITH
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Retired CSE adjunct professor Ira Kalet passed
away last night after a long battle with cancer.

Ira joined the University of Washington in 1978 in
the then newly formed Department of Radiation
Oncology. Subsequently he held adjunct

I h D appointments in Computer Science & Engineering,
I ra Ka et ’ P Bioengineering, and Biological Structure, and a joint
appointment in Medical Education (now the
Department of Biomedical Informatics and Medical
Education).

SPECIAL ARTICLE

Technology for Innovation in Radiation Oncology
Indrin J. Chetty, PhD,* Mary K. Martel, PhD, David A. Jaffray, PhD,*

1. Integrating radiation oncology databases across the computational backgrounds. Training grants for devel-
discipline will facilitate science and elevate the quality of  oping programs for oncology informatics will provide
care (45). The creation of a Virtual Clinical Trials Group  these individuals with the knowledge needed to support
that enables federated databases at different institutions  informatics rescarch initiatives.
for conducting cooperative rescarch is a consideration.

ing practices and outcomes will permit high mean 4. Informatics tools need to be developed 1o support the
and tight variance in clinical practice and will improve  monitoring of the quality of oncology care at the point(s)
quality (46). of delivery (48). Real world—based evidence approaches
are cmerging in other domains and will also benefit the

2. Tools need to be created and made available for patients field of radiation oncology. The often-quoted stalements.

and physicians to discuss treatment options, as Tecom- that 5% differcnces in dose result in significant changes.
mended by the Patient-Centered Outcome Research i twmor control and normal tissue complication proba-
Institution. Such an approach will drive the development. bilitics will be reinforced or challenged through col-
of metatreatment planning systems, in which one pre-  lecting and sharing data from the entire cf !

scribes an outcome, nol a treatment (eg specification of a.
95% local control rete at 5 years with 5% grade 3 or
more dyspnea) (6, 47). This could also be expanded
beyond radiation oncology.

3. Expertise in the informatics domain among radiation
oncology professionals needs to be developed (6). The
most suitsble candidates with the appropriate skill sets
and multidisciplinary knowledge to succeed in this space
are likely medical physicists or physicians with strong.
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NATIONAL CANCER INSTITUTE
Informatics Technology for
Cancer Research

Funding Opportunities
ITCR has issued four Funding Opportunity Announcements aimed at

stages of
PAR-15-334 Dx of Methods and

Algorithms for Cancer Research and Management (R21)

PAR-15-332 Early-Stage D of
for Cancer Research and Management (U01)

Enhancoment & Dissemination

PAR-15-331 Advanced D of
Cancer Research and Management (U24)

PAR-15-333 Sustained Support for Informatics Resources for Cancer
Research and Management (U24)

g

Clinical Informatics Becomes a Board-certified Medical
Subspecialty Following ABMS Vote

Thursday, September 22, 2011
AMIA to offer prep courses for clinicians who sit for Board Exam

DG—Today, Al for
announces the success of a multi-year initiative to elevate clinical informatics to an
American Board of Medical Specialties (ABMS) subspecialty certified by an
examination administered by the American Board of Preventive Medicine and
available to physicians who have primary specialty certification through the American
Board of Medical Specialties. Joining such subspecialties as pediatric
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Fellowship in Clinical Informatics: Radiation
Oncology Track
Fellowship in Clinical Informatics: Radiation Oncology Track

Clinical informatics s the subspecialty of all medical specialties that transforms health care by analyzing,
designing, i ing, and ingi ion and communication systems to improve patient care,

enhance access to care, advance individual and population health outcomes, and strengthen the clinician
patient relationship.

< School of Medicine
\‘;S) Radiation Medicine

OHsU




Health Informatics via Machine Learning for

the Clinical Management of Patients

D. A. Clifton, K. E. Niehaus, P Charlton, G. W. Colopy vﬁ;ﬁmﬂﬂmﬁ%&ﬁl ol

4 conclusions Published onling August 13, 2015

We conclude by emphasising that the field of
health informatics systems based on machine
learning, drawing on disparate datatypes
from the ICU, the wider hospital, and from
(potentially very complex) EHR data, is in
its infancy. While the majority of hospitals in
the developed world have implemented EHR
systems of some kind, the integrated use of
the large quantities of data that arise from
such systems is not employed at scale. This

Review of Developments n

Electronic, Clinical Data Collection,
and Documentation Systems over 295 aricles added 1o
the Last Decade - Are We Ready fo
Big Data in Routine Health Care?

‘ i REVIEW
. frontlers published: 30 March 2016
mn Oncology doi: 10,3389/0nc.2016.00075

FIGURE 1| Flow chart of the review methodology.

The curse of clinical implementation:
From n=895 to n=5
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Kessel and Combs Critique

It is not the lack of technology or tools that keep “the health
revolution” from coming, but the lack of expertise, specifications,
and concepts (4). One of the most common weaknesses found
is the lack of standardization. Most researchers create an indi-
vidual in-house solution without considering communication
standards, such as DICOM, HL7, https, and html (37). These
solutions work only in their own environment and are tailored to
meet their requirements. This might be necessary up to a certain
level, as already stated that there is no “one-size-fits-all” solution
for documentation of clinical trials, research data, or patient data

FIGURE 3. DATA STANDARDS/DICTIONARY
DEVELOPMENT STEPS

IDENTIFY DATA
ELEMENTS FROM
DECISION CRITERIA

REATE DATABAS]
OF ALL REASONABLE
ELEMENT WORDINGS AND
DEFINITIONS

CONSENSUS-
DERIVED STANDARDIZED
DATA ELEMENTS AND
DEFINITIONS

DATA DICTIONARY

UBLIC),
DATABASE CONSTRUCTOR
(PROPRIETARY)

CONTINUDUS
REVIEWAND
REVISION

K. Hammermeister, MD (ttp:/wwiw.uni- mainz( '_Lhtm)

The “ontology” h'haT we 52 fo dogs

problem

» Without common
terminology,
content is
obscured...and
we may not be
aware of it!

7/31/2017
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Standards and ontologies

+ Ininformatics, a standard is voluntary consensus developed or adopted by voluntary bodies
— Can also include

« definitions

. a ification system or cc
+ a series of procedures to follow,
. ifications for sizes or di ions, design or

quality measures or describe amounts of materials.
process, a system, a service, a practice, or a specific product.

In computer science and information science, an ontology is a formal naming and definition of

the types, properties, and interrelationships of the entities that really or fundamentally exist for a
particular domain of discourse.

Example: DICOM-RT is a standard, TG-263 OAR names are an ontology.
Functionally speaking, a relational standard=an ontology.

EXAMPLE: Can we just name OARs the same?

Let’s start by trying to fix the standardization problems for DVH data
TG 263 - Standardizing Nomenclature for Radiation Therapy

. group of 57 stake holders

domestic and international groups

representing a broad range of perspectives

Physician ASTRO Academic IHE-RO

Physicist AAPM Community Dicom Working Group
Vendor ESTRO Large Practice NRG

Dosimetry Small Practice IROC

Slide courtesy of Chuck Mayo
(U. Mich.)
T

ENHANCINGY/ALUE
IMPROWING OUTCOMES

Development Process

—) = ) Workwin L
Define Apply to

Stakeholders
Review G jidelines Structures  Pilot changes
current Nomenclature
practices Live in
Volunteer Clinics \ J
Review and NRG Feedback
with From Use
Group
Only minor
changes
from Pilot

Slide courtesy of Chuck Mayo
(U. Mich.
&

ENHANCINGY/ALUE
IMPROWING OUTCOMES
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Task Group findings are in parent committee review process

* Guidelines
* Target Structures
« Standardized rule based approach (10)
« Addresses primary issues and expandable

* Non-Target Structures
* Rule based approach (15) with a few concessions
« Specific listing of 736 defined structures

* DVH Nomenclature

Slide courtesy of Chuck Mayo

(U. Mich.)
L ’ ¥

g As1602016  ENHANCINGY/ALUE

e IMPROWING OUTCOMES

L fa - PCE

TABLES.3 e Nammes for Orgass s Risk
- Pt

We're just now
agreeing on the
ontology of
structure names!!!

Ontology issue example:
“How do you designate recurrence in IMRT era?”

12
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The Standards Problem/Opportunity

HOW STANDARDS PROUFERATE:
(66 A CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)
H?! RDICULOUS!
WE NEED To DEVELOP
|| ONE UNIVERSAL STANDARD ,
SITUATION: || Tar covers Evervones | | S TUATION:
THERE ARE || USE CASES. o THERE ARE
14 COMPETING % O I 15 COMPETING
STANDARDS. STANDPRDS.
OURNAL OF MEDICAL INTERNET RESEARCH Luoctal

101:10.2196/jmir.5870

Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary

View
Figare 2. Infiamion o k th prodictive modallingprces.
i S A
ot ilnen o ot st
ol ptvereyoree woipeersponel
]
o i,
W pntimrepore
o
Truning duta Testing dets. External validetion recsrds

rm 1 clsfton e For cmsfcamen (e For chmsifcanin
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JOURNAL OF MEDICAL INTERNET RESEARCH Luoctal

Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary

Vlew doi:10.2196/jmir.5870

7 Preparc data for model building Identify relevant data sources and quote the cthics approval number for data access.
State the inclusion and exclusion criteria for data.
Describe the time span of data and the sample or cobort size.
Define the observational units on which the respoase variable and predictor variables are defined.
Define the pr information leakage from the re-
sponse variable to predictor variables.©
Describe the data preprocessing performed, including data cleaning and transformation. Remove
outlicrs with impossible or extreme responses; sate any criteria used for outler removal.
State how missing values were handled.
Describe the basic statistics of the dataset, particularly of the response variable. These include the

P

ratio of postive to negat for of the response
varisble for regression problem

Define the model validation strategies. Intemal validation is the minimum requirement; external
validation should also be performed whenever possible

Specify the interal valid Common methods plit, time-based spli,
and patient-based split.

Define the validation metrics. For regression problems, the normalized root-mean-square error
. For

: specificity, pos-
itive predictive value, negative prodictive value, arca under the ROC? curve, and calibration plot
19

For . split the data into a derivation set and a validation sct. For prospective

studics, define the starting time for validation data collection.

JOURNAL OF MEDICAL INTERNET RESEARCH Luoctal

Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary

View doi:10.2196/jmir.5870

8 Build the predictive model Identify independent variables that predominantly take a single value (cg, being z€ro 99% of the
time).

Identify and remove redundant independent variables.
Identify the independent variables that may suffer from the perfect separation problem.”

Report the number of independent varisbles, the number of positive examples, and the number of
negative examples.

In particular,
there should be a sufficient number of observations in both positive and negative classes.

Determine a set of candidate modeling techniques (eg, logistic regression, random forest, or decp
Icarming). If only one type of model was used, justfy the decision for using that model.®

Define the performance metrics to select the best model.

Specify the model selection strategy. Common methods include K-fold validation of bootstrap to
estimate the lost function on a grid of candidate parameter values. For K-fold validation, proper
stratification by the response variable is needed®

e 1) balance
tyor and (2) the familiarity the cod user!

JOURNAL OF MEDICAL INTERNET RESEARCH Luoctal

Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary

View doi:10.2196/jmir.5870

Table 5. ltems to include when reporting sodels in biomedical section.
Iem  Topic Checklist item
number
10 Clinical implications Report the clinical implications derived from the obtained predictive performance. For example,

Y
from a care model leveraging the model prediction? And to what extent?
n Limitations of the model Discuss the following potential limitations:
 Assumed input and output data format
* Potential pitfalls in interpreting the model®
+ Potential bias of the dats used in modeling
* Generalizability of the data
2 Unexpected results duning the expeni-  Report unexpected signs of coeflicients, indicating collinearity of complex interaction between
" predictor variables®

7/31/2017
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Baby steps...

» Why is clinical implementation so hard?
— Nature of Big Data
* Sparseness of Big Data
* Quality assurance
— Nature of machine learning
« Algorithms only "know what you tell them, or ask
what you ask them to find”
« Interpretability of complex datasets harder for
humans than for algorithms sometimes

REVIEW  Meldolesi, van Soest, Damiani et al.

Increasing descriptive power
Mta-language domains
Semantically
Global data Giobal data Triplo stores,
B dictionaries dictionaries logics, ,;‘:"""“
Reglopes (Werature bound)  (certfication bound)  topicmaps . MPe SO,
Research Typical region of knowledge
representation, sharing and
roasoning or computers
2| Procedure
Typical region of ki
jon, sharing and
reasoning for humans.
Registry * You are here!
Complexity
Figure 1.
point of view.

32 Flavors of machine learning algorithms...

Benefes and imitations of diflerent machine learming algorithms.

Algorithm Advantages Limitations
Decision Tree * Easy to understand * Classes must be mutaally exclusive
= Resuits depend on the order of stribute selection
Risk of overty complex decision trees
Naive Bayesian « Easy to understand « Variabies must be satistically indeper
. R Numeric attributes must ollow 3 sormal distributian
« Noeflect of rter on training. « Classes must be mutually exclusive
* Less accuate
kenearest Neighbors « Fast and simple g

. . ipatec power 25 number of varizbles increases
* Can be used for both regression and csification

Support Vector Machine » Hobust model « Slowtzaining
* Limits the risk of error « Risk of overfiting
= Can be used to model noa-linear relations. « Output model I dificult to understand
Acticaal Newral Network - . {+black baxs)
‘and Deep Learing

* Gan be easily updated with new data * Requires a Jot of computer power

15



Remember, a HUMAN PHYSICIAN has to

understand the ML output...

2.1 What s Statistical Learning? 25

£ _|Subsat Selection
E Lasso

Least Squares

Genaralized Addltive Modals
Trees

Intarpretability

Bagging. Baosting

‘Suppart Vsctor Machines

T T
Low High
Flexibility
FIGURE 2.7. A representation of the tradeoff between flexibility and inter-

pretability, using different statistical learning methods. In general, as the fezibil-
ity of a method i , its interp

Leo Breiman, 1928 - 2005

1954 PhD Berkeley (mathematics)

1960 -1967 UCLA (mathematics)
1969 -1982 Consultant
1982 - 1993 Berkeley (statistics)

1984 “Classification & Regression Trees”
(with Friedman, Olshen, Stone)

1996 “Bagging”
2001 “Random Forests”

RECURSIVE PARTITIONING ANALYSIS (RPA) OF PROGNOSTIC FACTORS
IN THREE RADIATION THERAPY ONCOLOGY GROUP (RTOG)
BRAIN METASTASES TRIALS

LAURIE GASPAR, M.D.,* CHARLES SCOTT, M.S.," MARVIN ROT™MAN, M.D.,*
SUCHA ASBELL, M.D.,* THEODORE PHILLIPS, M.D.,* ToDD WASSERMAN, M.D.,*
W. GiLLiEs MCKENNA, M.D., Ph.D.** AND ROGER BYHARDT, M.D.""

746 1. J. Radiation Oncology @ Biology ® Physics “Volume 37, Number 4, 1997
. (1) RTOG 76-16
A —— 6 105710 dae 2w
5 —— wg 105/ 10 days /2 wes + MISO (3) RTOG 89-05
b wa ot/ s 3 whs G
z —— o6 Gh/Bdays/Iwks +MISO A
E N ———= 375Gy 15 fx 3 wks
D

() RTOG 8528 "
Ry - wo Lsoymorsonisen | ———= 315Gy 15 x 3 wks
! 1= wo  osomman H BUAR continuous 96 hr infusion,
of ——= saoy 1.6 Gy BID/ 34 1x/ 17 days 0.8 g/m2/d starting 3-4 days
9 ; == o e i prior to weeks 1 and 2 of radiation
H - we omormwmen
EY T 040y 1.6 Gy BID/ 44 1x/ 22 days

Fig. 1. Protocol schemas.

Iat. J. Radiation Oncology Biol. Phys., Vol. 37, No. 4. pp. 145-751. 1997

7/31/2017
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Radiation oncologists primary use of
“machine learning” has been "recursive

o weastises
prety

Fig. 2. Recursive tree.

Fig. 3. Survival curves for Class 1, II, HL

Int.J. Radistion Oncology Biol. Phys., Vol. 37, No. 4, pp. 745-751, 1997

Result: Rad Onc loves RPAL!!

* RPAis a “brand name”

— Classification and regression trees
— Decision trees

— Tree-based analysis
» We got into the game early...

— But we have a long ways to go in machine
learning

Example: ML for toxicity/dose response

hard palate; IPC
lo: MPM - medial

Radiotherapy and Oneology 118 (2016) 304-314

17



7/31/2017

RPA for thresholding doses that indicate

toxicity...

‘Dase-volume correfates of C-RAD

RPA-based method

Table 2
Univariate RPA-derived ROI specific dose-volume thresholds. LogWorth represents the negative

Recursive partitioning analysis

Muscle  V-level Percent- ROC AUC  ROC AUC LogWorth p-Value S5
OAR threshold (%) cohort  holdback

(test) (verification}
ADM 60 79 0.68 0.60 595 <0001
BM 35 658 0.65 057 1.09 00815 ns
M 45 035 0.64 051 1.00 00888  ns
GGM 35 989 0.70 055 274 o001
PC 70 9832 0.60 051 108 00831 ns
[ a7 999 0.67 0.44 2.83 00015
LPM B6 131 053 035 107 00860 ns.
LRX 6 1 061 0.47 089 01274  ns
MHM 69 175 074 0.64 637 <0001 7
MM 66 44 061 053 088 01314 ns
MPC 48 99.9 0.63 054 017 06825 ns.
MPM 70 1 0.59 045 33 00005
POM 69 135 0.60 0.48 015 07070 ns.
PCM 65 68.9 0.62 0.49 024 05732 ns.
SPC 70 6.35 0.68 0.47 509 <0001 7

* Statistically significant at P<0.05.
** Staristically significant after Bonferroni correction.

RPA-based method

Model Effect

e 3
odd | ok | i e tdeae | et o
Meda | e et | s

e | et | e Cinars I irericgl fverven s o1
o paine | jaBIc) ¢ = pratue | "

1
e w9 | com | adihe

pa— B I B T i
Aue 255 00027 | (102105

+

s !

vEs 762 0001 A8t
B o [

s e T e e A o
— | e | ad

B

MDACC RPA-based method showed Myelohyoid
muscle V69 and age were best predictors...
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Development of a multivariable normal tissue complication probability @Cm,
(NTCP) model for tube feeding dependence after curative radiotherapy/
chemo-radiotherapy in head and neck cancer

Kim Wopken **, Hendrik P. Bijl*, Arjen van der Schaaf?, Hans Paul van der Laan?, Olga Chouvalova®,
Roel J.H.M. Steenbakkers *, Patricia Doornaert ®, Ben J. Slotman ”, Sjoukje F. Qosting <,

Miranda EM.C. Christianen®, Bernard F.AM. van der Laan?, Jan LN. Roodenburg®, C. René Leemans,
Irma M. Verdonck-de Leeuw’, Johannes A. Langendijk*

Table 3

Results of the LASSO analysis with tube feeding dependence at § months TUBEys) 35 | |M( :G Lasso

primary endpoint.

T = _wwa e method showed

T-classification
Tis-T2

T3-T4 t:‘;g (117-206)  <0.001 phal’yngeal

Baseline weight loss

e ey 2 onom om constrictor

2.58
Severe weight loss (»10%) 508 (332-730) <0.001
Treatment modality I d
Conveniona rackionsion 100 muscie an

Radietherapy + cetuximab 174 (150-201) <0.001 .

Accelerated fractionation 333 (240-453) <0.001 h

s @ sz @ cricopharyngeu
Dosimetric variables

PCM superior mean dose (Gy) 107 (104-109) <0001 b t

M nfeor meon doe (G3) 1 (10110 0008 S were nes

Contralateral parotid mean dose (Gy) 101 (100-102) 0.4

Cricopharyngeal muscle mean dose (Gy) 102 (101-103)  0.004 predlctors

Abbreviations: O, 04ds ratio; CI, confidence interval; PCM, pharyngeal constrictor

Radiotherapy and Oncology 113 (2014) 95-101

Who was right?

* Answer: Everyone!
— Solid methods/different datasets

— Dose variation was due to tumor location/site,
and dose to OARs, not “magic dose threshold”

— MDACC all oropharynx, block over
cricopharyngeus m., posterior constrictors m. with
low variability as they were partially covered by
RP node CTVs.

— UMCG mostly larynx, little dose to myelohyoid m.

H e

Lielinood
EER]

T
Training Test

Fig. 1. Image plot of the comelation matrix of the xerostomia Fig. 2. A box plot of the fit performance in training sets an
data. Pearson’s correlation coefficients amoag predictor variables prediction performance in test sets for xerostomia data of all
e shown n diferent colors from preen o red. Red indicates igh  variable model is shown. The median of the likelihood is indi
coelation between two varables. Heee varibles are naed by cated by the center line, and the first and third quartiles are th
their index, and their deacription is lisicd in Table edges of the box area. The extreme values (within 1.5 times th
interquartile range from the upper or lower quartile) are the end
of the lines extending from the inierquartile range. Poinis ¢
a distance from the median greater than 1.5 times the

7/31/2017

range arc plotied individually (circles).

Xuetal.  IntJ Radiation Oncol Biol Phys, Vol. 82, No. 4, pp. e677—e684, 2012
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Problem/opportunity: We don’t have

accessible aggregate data...

Low granularity
Low cost/patient

Regional incidence
Environmentst infuences

requires al patients regionally

Disparities of care
Practice quatity Improvement
Safty
Bigdata requires all patients from participating practices.

opportunity Number
of

‘Outcome/Toxicty .
Individustized treatments patients
Data-driven quality control

Trestmant sdaptation
lorge random sample of patients

i
satisticaly
sufficent
patients

High granularity
High cost/patient

Peeling the onion...

Peopleware

Processes

(Gemtze)

f.» Information

Supported by

Modern radiation oncology practice comprises five
mation, software, and

ion, and use of IS and

FIGURE 7.1
major components: peopleware, processes, infor
T ful Sl

IT applications requires proper consideration of the hierarchy as well as
synergy among each of the components.

A e )

FIGURE72 High
options (e, surgery and requiring that shared
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+—— Treatment Dalivary — = a————— Traaiment Planning —————=

Figure 1. Chart illustrates
the radiation therapy work
flow for a patient with prostate
cancer. The work flow consists
of two stages, treatment plan-
ning (steps 1-18) and treat-
ment delivery (steps 19-30),
and is broken down into steps
that can be used to evaluate
the efficiency of the system
once it is implemented. The
work flow starts when the ra-
tion oncologist decides at
consultation that the patient is
to receive radiation treatment
(step 2). Gray boxes indicate
steps that are performed by
the radiation oncologist. Of
these steps, steps 9 and 13 are
incorporated into the treat-
ment planning system (TPS)
in most cases, but steps 15,
24,27, and 30 cither require
hard-copy records or radia-
tion therapy information that
‘may not be readily accessible.
DRR = digitally reconstructed
radiograph, DVH = dose-
volume histogram, LINA
linear accelerator, QA = qual-
ity assurance.

Treatment Planning Process Treatment Delivery Process

demographics

CT Simulator capabilities
ot ipai AE
AT Structures, Geometric
Elements, image

Treatment Management System

Manages treatment machines, stores
RT Objects, Treatment Delivery
Instructions, Treatment Records,
Provides for record and ver

Patient Positioning
System (in-room
pmlhomng)

AT on.eevs or ratment
DICOM Workiist

xports
Pationt Sotup Results

Treatment Delivery Systems

Imports
RT Objects for Treatment,

Treatment Planning Systems Check systems, IMRT QA 'DICOM Workiist

Systems.
RT Structures

Imports
Geometric Elements RT Objects for treatment

Image Registration data 'DICOM Workist
Defines, Creates, Imports and/or Exports. E

Exports
Treatment Records & history

xports
lements |Generates a report based on|

Dose Display verification of the treatment
plan

Radiation Beams
IMRT, VMAT, SRS, ARC & Static Plans

,,,,, Intraoperabilty development in process

Intraoperabilty developed by IHE-RO

An Hub for the of z (beres Acadisrice

Next-Generation Sequencing Studies that Support
Precision Oncology Clinical Trials

Yingdong Zhac”, Efc . Poley, Ming-Chung
David J. Sims?, Lawrence V. Rubinstein', Barbara A. Conley’, Akce.

P. Mickely Wikams*, amva.ln Kummar', James H. Doroshow" and RIChard M. Simon

L', Chih-Jian Lm’ Aiida Palmisano’,
P. Cher

Pere ogatatan
« Treatmont options
e DN
Upload vequencing ks gt ol
e upsd
+Lat rovow
~Potient report
Lob rwview Fabant 1 dekoking
Htaton summary
acssi.am [—
e ——
Patent report S
Pabont 0 daiiokeg
Figure 2. Tha misse anatha ot

ax5gred medues Astd in aach bas
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Biospecimen/pathology informatics critical

abers Dail

Sample sent to =l Report Yy

Fipaty b || | S | [ | packaged inxml transmissions to
—— clinical server

Use Cases:
Input Subroutine Process Document Databuse = Operations

«  dlinical trials
clinical database - Disoovery Selenes

Harnessing Technology to Improve Clinical Trials: Study of
Real-Time Informatics to Collect Data, Toxicities, Image
Response Assessments, and Patient-Reported Outcomes in a
Phase II Clinical Trial

ooy
e March Larg

Questionnaire Toxicity RECIST
Event Track Event Track Event Track
Questions ChestcT
i a Blood drawn
|
Responsss
e Labs generated
Patient
evalusted
‘L Data loaded

Data loaded " Data Ioaded

Data losded

Scores.
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W cros genarated
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An Open-Source and Open-Access
Cancer Biomedical Informatics Grid
Annotation and Image Markup
Template Builder'

Tattanaiah Mongholost, PAD » David 5. Chanin, MD +Viodiir Kieper
Danil L. Rubin, MD

RG + Volume 32 Number 4 Mongkolwat et al 1227

Higure 2. S leurC o bow AIM
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require the user create markipa. The AIM be
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The Cancer Journal * Volume 17, Number 4, July/August 2011

TABLE 1. Producers of Information in Clinical Trials

Producers of Information in Clinical Trials Are as Follows:

A. Pre-enrollment
« The authors of the protocol
* The IRBs that approve it for local participation
* The lead institution, sponsor, or CRO that creates the
CRFs for EDC
* The individuals 5wordin§lors/§:lipicians._iqdividual
ang

t
interpret data for that protocol into local systems, including
i i and

reviews, and

institutional reporting.
* Clinical trial budgeting and contract management staff’
B. Intraenrollment
 The subject/patient
« The clinician, both in CRFs and in source documentation
(the medical record—on paper or electronic)
* The laboratory (hematology, chemistry, genomics,

and radiology

and systems
* Research monitors (queries and reviews)
« Internal and external regulatory reviewers
* Internal and external auditors

Data QA is science QA

Recsive
File

Walues of \
Pass or Fail

# Send Effors

= Send PASS

Formaie \
Dictionary 0ok 20900 pass or Fai

[ ] [
]

Leg and Track each step for Audit and Certification

FIGURE 5. Validation for format, fields, and values against
standards: a simple configuration for standards designers.

Pre-study

D Validate against standard

. Validate intemnally

Intra-study Post-study

7/31/2017
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FIGURE 6. Possible automated validations: need and timing.
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DICOM-RT and Its Utilization in
Radiation Therapy'

Maria . ¥. Law, PhD » Brent Liss, PhDD

Figure 3. Chart illustrates radiation therapy work
flow. Yellow boxes indicate the DICOM-RT objects
that could be gencrated within the work flow. A radia
tion therapy treatment plan (step 2) with radiation
dose distribution involves the superposition of the
radiation therapy objects RT Plan, RT Structure Set,
and RT Dose on the corresponding set of DICOM
computed tomographic (CT) scans according to the
coordinates in the DICOM-RT standard. Because thi
work flow is for external beam therapy, the RT Brachy
Treatment Record information object i not shown.

DRR = digitally reconstructed radiograph, DVH =
dose-volume histogram.

Table 2

Image Object versus an RT Object [0D Module

Information Entity of Module® Information Entity of Module®

DICOM Image Object (MR Imaging) DICOM-RT Object (RT Structure Ser)

Patient Patient Patient Patient

Study General Study Study General Study

Series General Series Series RT Series

Frame of Reference Frame of Reference .. -

Equipment General Equipment Equipment General Equipment

Image General Image, Imaging Structure Set Structure Set, ROI Contour,
Plane, Image Pixel, MR RT ROI Observations,
Image, SOP Common (13) SOP Common (13)

*Only mandatory modules are listed. A module groups related information together. For example, the Patient

module contains attributes related to the patient, such as Patient’s Name, Patient ID, Patient's Birth Date, Pa-

tent’s Sex, and so on. The modules for the image Information Entity depend on the modality concerned. In this

table, the modality of interest is MR imaging; thus, in addition to the General Image module, Information Entity

has a specific MR Image module and other related modules. Structure Set is one of the DICOM-RT objects

and includes Structure Set, ROI Contour, and RT ROI Observations as its specific modules. 10D = information

abject definition, ROI = region of interest, SOP = service-object pair.

Basic radiation therapy workflow

i Treatment

jagosis = CTimagng » GEb

plan
generation

Beam angle selectio

Daso doposil
matix computtin

Plan apimization

objt)
objea)
Dosimetrc
. varlables:
‘Multiobjective
i) Plan1)
Plancz)
Plan)
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Outcome

management | o.. Disgnostic
Hospital information. systems Imaging
system systems

iy

eded

Radiation oncology
information
system

Electronic medical *L
eecord

Treatment delivery
F  sndimagng
5

ystems.

=
| Reviewing and.
verthearion frtess
Radone
syutems
Equipmentand
ae patient-specific
% QA tystems
‘modern rads practice. Highly storage
fe, and i all
»
s <-
=
<. |
49 & lmmetticaton Sytem

Treatmest Plassing

Paticat Management

MR Linsc

Complex functional imaging

Figure 6. Schematic of the data processing performed in the clinical trial. See the text for

an explanation of the various steps. Dotted arrow = work in progress. ADEPT = Adept Data
Exploration and Processing Tool, PK = pharmacokinetic.
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with the tools of the rescarch PACS. Screen shot from iPAEOR shows the fol-
ic image (top lef), dffasion-weighted mage (top center), T1 map from DCE
t0p right), T1-weighted anatomic image (bottom lef), ADC map (calculated
and transfer coastans (K™) map (caiculated in MRIW) (bottom right). The iPAEOR
o agiog da o it of ssrcn a5 beougt ot regisaton s iplayod e Ly e
ca-weighted imaging.

Figure 3 _ Integrating imaging and clinical information to construct a disease model, (A) Features are computed from normalized vmaqmg studies.
Inths case, g cancer s denfedon a CTimagig sty op magel. and a coespnding posn enision omograpy sy G

mage) s performed to assess the level of ity (8) An integrated data model creates me basis for combining image data with add«wnal
oot om th pabnt’ medcal oot haby prvcing conent 1 e mapln sucy irirpretation.For stnce, ploation on 0
patient’s smoking history, resuts of thoracic tumor biopsies, and curtent (and past) treatments lend insight into an individual’s status. (C) N
Pl scae tsease ol canbe populatd fom this magig basedabxenatonl databse o eabisa populaion-based pespectheon the
condition (a partial model is shown). Conversely,if a disease model has been vetted for a given popalation, then the model can be used as a
prognostic taol for a given individual, offeing tailored recommendations. Knowledge from published scientifc studies and other resources can also
be embedded within the disease model,

1056 Bl AAT, et ol | Am Med inform Assoc 2013:20:1053-1058. doi:10.1136/amiainl-2012-001340

What about non-clinical data that isn’t in the

PACS, TPS, or EMR, but can affect
outcome?

Patient specific QA work flow

(1) - DICOM plan
(2) - QA - EMR QA mode
Log File (3) - Log files & BMFs
Independent | g, Analysis (4) - QA - ACS Phys mode
Dose Calc P (5) - DICOM dose
@ (6) - Log file DICOM plan
T“ VR | N
g IO
TPS ACS || Meas bose
Result Com
QA Physics] 7 = P
i (a),
(s) I files ,L ) T
v
Dose
Comp
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Daily CT-guided setup

LINAC Patientcouch  In-room-C:T

Treatment room

DC tracking software
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What about outcome/clinical/PRO

integration?

Can electronic web-based technology improve quality of
life data collection? Analysis of Radiation Therapy
Oncology Group 0828

Benjamin Movsas MD #*, Daniel Hunt PhD ®, Deborah Watkins-Bruner PhD, RN ¢,
W. Robert Lee MD, Med ¢, Heather Tharpe RN OCN °, Desiree Goldstein RN MSN *,
Joan Moore RN OCN 9, Ian S. Dayes MD ", Sara Parise RN OCN ', Howard Sandler MD

The EPIC QOL compliance rates at baseline, 6 months
(the primary endpoint), and 12 months are shown in Table 2.
At baseling, the QOL completion rate was 98%. Compared
with the 52% 6-month EPIC completion rate using paper
forms (in RTOG-0415), the EPIC QOL web-based comple-
tion rate at 6 months was 90% (2-sided P value < .001). At 1
year, the EPIC QOL web-based complisnce rate was 82%.
Reasons for noncompliance at 6 months with EPIC QOL via
the web-based strategy were patient refusal (2%), patient
could not be contacted (2%), or other reason (6%).

Computerized patient-reported symptom assessment
in radiotherapy: a pilot randomized, controlled trial

Erik K. Fromme ' - Emma B. Holliday? - Lillian M. Nail® - Karen S. Lyons® «
Michelle R. Hribar* - Charles R. Thomas Jr*

Support Care Cancer (2016) 24:1897-1906 L)
DO 10.1007500520-015-2983-3

. 1 CONSORT dagram fee posients prsipating in & e,

ncmert @ tadnterey

1900 Suppeet Care Camcr (2016) 24:1497-1906

Fig, 3 Sermplereport showing what was peinted s ven to cinicians b The ncat e s sherw scores fo peiin ifferest smssoec Scations.

the interventicn gruaps. Patents received 3 version with hrger font
ccupying two pages frund and back. The mp shows e survey daies  scores. The foflowing e rows show skin iy sympioes,
e oms, sed exmotional sed fumction scales. The

e
time. The first shree rows show scores for Kersoliky Performance  hottom

2 show o —
‘St (KPS), Quaby of Life (QOL), and sussfacs with i contol.  (PROY) e

oess, KPS, and QOL/puin conol stislaction
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Fig. 4 Venn diagrams and Cantrol Group: Intervention Group:
sentitivity ascounting 1o show = 26 paticnts who consenied to on- N =23 paticnts who conseated to on-
concondance between paticnt- treatment-visit recording. treatment visit recording

reported symploms and

symplams discussed in weekly

office visits for patients in the

E
control and intervention groups.

Because this analysis uses data

from audio-tuped patient-

physician. interactions, the ]
samples size are the control n = 26

and intervention n = 23

(D

Reported(230) Reported(202)

Discusscd(78)

All Symptoms

“lmerveation _ Coomrol “Palue
Sensitivity accounting for within subject comelation I
Sensitivity without accounting for within subject comclation

@ springer

Impact of Statistical Learning Methods on the Predictive
Power of Multivariate Normal Tissue Complication
Probability Models

Cheng-Jian Xu, Ph.D., Arjen van der Schaaf, Ph.D., Cornelis Schilstra, Ph.D.,
Johannes A. Lanaendiik. M_.D.. Ph.N._ and Aart A. van't Veld Ph.D.

Table Variables in the xesostomis data set

Variable index Description. Range or limits__ Median or frequency _ Correlation
1 Chemotherapy* 01 142,43 0.1505
2 Geader' 01 118, 67 00316
3 Age 40-92 62 00418
4 Medical ceater’ 0, 140, 45 0.1983
s Volume of saft palate 15-12 436 01184
6 Mean dose 1o soft palate (Gy) 0-73 2596 04123
7 Volume of contralateral parctid gland 9-58 2510 01360
8 Mean dose 10 contralateral parotid glands (Gy) 0-6 2637 04935
9 Volumse of ipsilateral parotid gland 9-56 2631 ~0.1356

10 Mean dose 1o ipsilateral parotid gland(Gy) 0-71 3516 04634
1 Volumse of contraatecal sublingual gland 006-2.5 039 0871
2 Mean dose 10 contralateral sublingual gland (Gy) 0-73 1453 03070
n Volume of ipsilateral sublingual gland 006-24 035 01355
1 Mean dose to ipsilateral sublingual gland (Gy) 0-73 1631 02574
15 Volume of contralateral submandibular gland 35-17 865 ~0.1228
16 Mean dose 10 contralateral submandibular gland (Gy) ~ 0.08-76 270 04532
n ‘Volume of submandibular 06-20 871 ~00886
18 Mean dose 10 ipsilateral submandibular gland (Gy) 0.06-76 5471 04362
19 Volume of the lower lip 05-55 198 ~0.0013
20 Mean dose 10 the Jower 1ip(Gy) 0-71 (%] 0.1662
21 Bascline xerostomia score(s) 1234 106,53, 19,7 03578

“Chemotborspy
Goader = 0, Male 1, Femmak:,

. =0, No: 1, You
 Modical center = 0, University Medical Center Groninge; 1, Free Univerity Medical Center Amsterdum.

BIG DATA

Lessons From Large-Scale Collection of
Patient-Reported Outcomes: Implications
for Big Data Aggregation and Analytics

Jeff A. Sloan, PhD,” Michele Halyard, MD," Issam El Naga, PhD,’
and Charles Mayo, PhD*
The Vision: Q0L PROs s an actionable, integrated vital sign

Patient Medical Indicators Patient Reported Outcomes
Genonics, Radiomics.etc Q0L-related assessment

[__Prophylactic interventions for G0L-related domains

|

Real-time Monitoring of PRO QOL-related domains

Triggered supportive care or treatment modification
=
icar il quatity of life
Fig. 1. Vision for use of patient-reported outcomes

(PROs) as part of clinical decision frameworks. Abbrevia-
tion: QOL = quality of life.
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Patient-reported
outcomes (PROS)

PROs Big data analytics (s

Data pre-
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imputation, etc)
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i/

Fig. 6. With demonstration of the capabilities of patient-reported outcomes (PROSs) to act as prognostic indicators, their
importance as part of modeling outcomes is underscored.

OPEN GACCESS Freely avallable oniine TS

Patient Reported Outcomes (PROs) in Clinical Trials: Is
‘In-Trial’ Guidance Lacking? A Systematic Review

Derek G. Kyte'", Heather Draper’, Jonathan Ives, Clive Liles”, Adrian Gheorghe', Melanie Calvert'*
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T
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SCORMNG

DEALING WITH CORCERNING PRO.
oaTA

(DEALING WITH ADOITIONAL PRO-
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SHOULD PRO DATA IFORM
MANAGENENT

PROGATAAGCESS

Table 1
Radiotherapy research data types within their common IT systems.
Information type Data examples
Baseline clinical Demographics (including co-morbidity and ~ HIS.
data family history), TNM-stage, date of TOS
diagnosis, histopathology
Diagnostic imaging  Diagnostic CT, MR and PET imaging PACS
data
Radiotherapy Delineation/structure sets, planning-CT, PACS,
treatment dose matrix, beam set-up, prescribed dose RIS
planning data and fractions
Radiotherapy Cone beam CTs, orthogonal EPID imaging, PACS,
treatment delivered fractions RIS
delivery data
i Surgery, His,
treatment data DS
Outcome data Survival, local control, distant failure, EDC,
toxicity (including patient reported TS
outcomes), quality of life
Follow-up imaging  Follow-up CT, MA and PET imaging PACS
data
Biological data Sample storage, shipping, tracing and lab LIMS
regults
Additional study Study design, protocol, eligibility criteria  EDC,
conduct data CTMS

7/31/2017
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Data collection
Benefits of a clinical data warehouse with data mining tools to @WM
collect data for a radiotherapy trial

Erik Roelofs >, Lucas Persoon®”, Sebastiaan Nijsten®, Wolfgang Wiessler®, André Dekker®",

Philippe Lambin *!

“Department of Radiation g A (MM}, The A alvern, 24, USA

© 2012 Tod Goft

7/31/2017

“Here’s a list of 100,000
warehouses full of data. I'd like
you to condense them down to

Pl 1. Schematic oveew of e CAT s wareuseveseae ol The syvers

xpor. seveal mdees Gt In e syten and 3 casky STERNE by we>

e ] B
s one meaningful warehouse.

176 Data mining for radiotherapy mials

abe 1
Porameers coecied o he NSCLC and el cancer groups.The st cohmns show which daa »

Tormenes oac Hectum Soure cten

Manaal g

Genoer v v Gun s Tooked
0 e v v P B

“TNM staging v v an EMR

Chemo theragry v v Chant -

Mo of piiee bl sodes v : e B

“Tumour PA v v hart EMR

v Gt v

Savat v v un Br

Toa dlivered doe v v v v
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1V volame v v xo oacs P—
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M v Xi0 PACS

prom Turmons Taeo e
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* Vs and Vo data for the lungs were calculated with both Jungs minus the PIV.
* MLD data for the lungs were calculated with both lungs mitws the GV,

Integration of imaging information in
designing treatments

Adapted Imaged anatomical
Patient factors and tissuebased biomarkers  documented delivery  treatment and functional changes  Outcomes
H H '
- E (L
Image Treatment - /) \

Image

Tissue

Protherapeutic activity Guide  peritherapeutic activity
Jaffray, D. A. (2012) Image-guided radiotherapy: from current concept to future perspectives
Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2012.194
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Radiomics/radiogenomics magnifies this

challenge/opportunity

— Radiomics is “extraction and analysis of large amounts of advanced quantitative
imaging features with high throughput from medical images obtained with
1y, positron emissi or {
imaging.” (Kumar, 2012)
— Radiogenomics
+ Inimaging community refers to linkage of imaging features w genomics

« In radiation oncology community refers to genomic correlates of radiation
response

-

Imaging Segmentation Feature extraction Analysis

Fig 4. The Radiomics workflow. On the medical images, segmentation s performed o define the tumour region. From this region the features are
extracted, ¢.g. features based on tumour intensity, texture and shape. Finally, these features are used for analysis, ¢.g. the features are assessed for
their prognostic power, or linked with stage, or gene expression.

e 2 27 e 25 54 s 20 e g s [
Decoding tumour phenotype by noninvasive .. .
imaging using a quantitative radiomics approach EXC|t|ng timel!

Hugo JWL Aerts' 44+, Emmancel Rios Velszzvez'2, Ralph TH, Leijnasr, Crintan Porrar',
Patick Grossmann?, Sara Carvahal, Johan Bussink’, Rané Menshoumas’, Benjamin Haibe KainsS,
Derek Ritveld”, Fraric Hoskers', Michelie M, Riethergen?, C. Rend Losmans!, Andre Oekier’,
JoPn Quackenbush’, Robert 1 Giles” & Phiipoe Lamin’

0 e s e
o0 T

ccuses

Wow!

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5006
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Lung Texture in Serial Thoracic Computed

Tomography Scans: Correlation of Radiomics-based
Features With Radiation Therapy Dose and

P

Alexandra Cunliffe, PhD," Samuel G. Armato I11, PhD, " Richard Castillo,
PhD,' Ngoc Pham, MD,’ Thomas Guerrero, MD, PhD," and

Hania A. Al-Hallaq, PhD'

Fig. 1. Process for mapping the center of each ROI (yellow box) from the pee-RT CT scan (a) 10 the post-RT CT scas (b)

and the RT plamming CT scan with aswocated dose map (¢). CT scams. CT = compted tor
imerest; RT = radiation therupy. A color versica of this figee s available at www.redjcurma

mography: ROI = region of

1054 Cunliffe et al.
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Change in feature value (AFV) from pre-RT CT scan

250

0.12

050y

Mean CT Pixel Value

P Grade 22
RP Grade <2

510Gy 10-156y 15206y 20250y 25300y 30-35Gy 350Gy 045Gy 45-50Gy 50-550y

Brownian Fractal Dimension

510Gy 101Gy 15200y 20256y 25.30Gy 30350y 35406y 4045Gy 45500y 50.55Gy

Dose (in 5-Gy hins)

Fig. 2. Plots of AFV versus mean physical dose with 95% confidence intervals for 2 features. Average values were
calculated on & per-patient basis in 5-Gy dose bins.
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Table 4  Comparison of si
3-feature combination

gle-f distinguish patients with pared with a classifier composed of each 2- or

Mean AUC (range)

No. of
measurcment Low dose Medium dose High dose. Fitied slope

1 Feature 0.64 (049-0.72) 068 (0.49-0.77) 0.71 (0.52-0.78) 0.71 (0.50-0.78)

2 Features 0,66 (0.59-0.74) 071 (0.59-078) 0.73 (0.59-0.78) 0.74 (0.59-084)

3 Features 0,66 (0.59-0.75) 072 (0.59-0.79) 0.72 (0.60-0.79) 075 (061-083)

Abbreviations: AUC = area under the receiver opersting characteristic curve; RP = radiation preumonitis.

Conclusions

This study that itati of
dose-dependent texture changes between pre- and post-RT
CT scans can differentiate between patients with clinical
(grade >2) RP and those patients without RP. Twelve in-
tensity- and texture-based features demonstrated signifi-
cantly increased changes for patients with RP. In general,
individual features could be used fo discriminate between
patients with and without RP with moderate performance.
‘When multiple features were combined in a classifier, AUC
increased significantly (AUC values from 059 to 0.84).
This study demonstrates the potential ability of radiomics
1o provide a quantitative, individualized approach to mea-
sure patient lung tissue reaction to RT and assess radiation
pneumonitis.
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Experimental radiobiology

Is there a causal relationship between genetic changes and @u.,_u
radiomics-based image features? An in vivo preclinical
experiment with doxycycline inducible GADD34 tumor cells

Kranthi Marella Panth *". Ralph T.H. Leijenaar ', Sara Carvalho, Natasja G. Lieuwes, Ala Yaromina,
Ludwig Dubois, Philippe Lambin

-

4days
interval

tumor size

tumor size
200mm’ 500mm’*

m

Fig. 1. Graphical representation of experimental work flow.
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However, when GADD34 was induced and radiation therapy
was given, there was additional growth delay due to a decreased
hypoxic fraction at the time of irradiation, as previously described
[12]. Thus the difference in tumor heterogeneity between
gene-induced and non-induced tumors post RT was reflected in
the imaging features likely as a result of a phenotypic change.
Interestingly, the radiomics image features that were found to be
significantly different between both groups shortly after irradia-
tion were also observed at larger tumor volumes. This phe-
nomenon was observed independent of the CT image acquisition
energy level, although the observed features were different
between both energies tested. Remarkably, the feature value for
slow-growing tumors (gene-induced) was higher than for
faster-growing tumors (no gene-induced group) upon combination
with radiotherapy.

Conclusion

‘We have shown in in vivo preclinical models that radiomics is
able to quantify the early effects of radiation treatment and genetic
changes in tumors with similar volumes, and identify differences
that are not visible to the human eye.
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That Radiomics' $0 ho| right now

But let’s not get carried away in a
“hype cycle”...

VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment
Technology Trigger TIME
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Watch out for the trough!!
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Oropharynx Machine

Learning/Radiomics Challenge

* ~20,000 US cases

» Oropharynx cancer (OPC) is epidemic due to
human papilloma virus (HPV) infection

» More HPV-associated head and neck cancers
than cervical cancers now

ESTIMATED NEW CASES ESTIMATED DEATHS
BOTH SEXES MALE FEMALE BOTH SEXES MALE FEMALE

All Sites 1529560 789,620 739,940 569430 299,200 270,250
Oral cavity & pharynx 36,540 25,420 1,120 7,880 5,430 2,450
Tongue 10590 7,690 3,300 1950 1,300 630
Wouth 1080 6430 4410 1830 1,140 630
ey 12660 3880 2,780 2410 1730 680
Otrer oral cavity 2050 1420 630 1650 1,260 390

DNA virus

>100 different sub-types

Infects skin and mucosa

Asymptomatic

Benign growths — warts

Oncogenic (cancer causing) types are mostly
16 and 18

Slide courtesy Adam Garden

7/31/2017
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HPV-negative (Inno-LiPA}
HPV-positive (Inno-LiPA)
271 samples
from SEER £ 0751
=
o 5 10 15 20
Survival Time (years)
No. at risk
HPV4+ 146 n 14 3 0
HPV- 18 63 27 4 o
Chaturvedi A K et al. JCO 2011;29:4294-4301 OURNAL OF CLINICAL ONCOLOGY
anz Wong et al. Radiomics in head and neck cancer: from exploration to application

Feature extraction

Feature selection

- Paowetn beions) @
Iindivicual level
Analysis
j Validation Ex: outcome
Clinical application ds correlation
) ‘prefeed muttivariate model
constuton

Figure 1 The “radiomics workflow” involves a scries of iterative steps for reproducible and consistent extraction of imaging data. These
steps include image scquisition, tumor segmentation, feature extraction, and feature selection. The selected features can then be analyzed
for outcome correlation and potential incorporation into predictive models. Additionally, validations should be done against completely
independent large datasets, preferably from other institutions. Transi Cancer Res 2016;5(4):371-382

Radiomics in head and neck cancers

Classification

m Wiang et al. Radiamics In haad and neck cancar: rom sxpioration ts agleation
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Head and neck radiomics: Outcomes

a6 Wang ot al. Radiomics in head and neck cancer: from exploration to application

Table 2 Studies 0n radiomics for prognestic and predictive bomarkess
Publication

Authors (study) Madality  # of patients. . if specified
Zhengetal (22) Dec2013  CT 2 Oral cavity (28); lanymx (21);  Overal survival
hypopharyrx (14); oral cavity (8)
Asmseral(3)  Junzomd  CT 474 {wraining); 545 valication) Lung or head and neck Meckan survival
Parmar et al. (35) Jun2015  CT 878 Lung or head and neck Survival; tumor stags; HPY.
status

Parmaretal (36) Dec2015  CT 101 {raining): 95 (validation) - Overall survival
Leljenaareral (37) Aug 2015 CT 542 Oropharynx Mecian survival
ElNagaetal (20) Jun2008 FDG-PET 8 - Overall survival
Dangeral (3)  Jan201s MRl 6 Oropharynx psd status

CT, computed HPV, human FDG-PET, emission MRI, magnetic

resanance imaging.

Transi Cancer Res 2016;5(4):371-382

Our challenges...

« If image features in the local region can predict
local phenotypic alteration (per Panth et al.), can
we predict local oncologic outcomes (i.e. local
control in the priamry tumor)?

« If the major driver of local control probability

genomically is known, can we identify genetic
correlates of local control risk (i.e. HPV status)?

Unmet needs, unanswered questions

» Can we crowdsource innovation?
» Can we draw on “non-insider” knowledge?
» Can we have some fun?
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&N »

## - 2016 OPC CPM challenges
MNd micecnr

Determine from CT data whether
a tumor will be controlled by
definitive radiation therapy.

Predict from CT data the HPV phenotype of
oropharynx tumors; compare to ground-
truth results previously obtained by p16 or
HPV testing.

Kaggle/MICCAI challenges

Host components Competition components

=m
e

Training Training. ]
csv zip I,

Image feature/
“Radiomics” extraction

l

DICOM acquisition
and collection

Y
=
A

Pubic eaderboard Agortam
\ dovelopments
refinament

Rules of the game

+ Binary classification
— HPV status (1/0)
— Local control of tumor in the primary site (1/0)
» Can leverage demographic data
» Half dataset with known HPV/local control available for
training
— Other half randomly split into “public” validation set
(visible to end users) and “private” validation set

— Could submit and see performance on “public” set to
avoid overfitting

— Winner declared on “private” dataset
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§ OPC patients identified through
database searching in the post-IMRT
g era (n=978)
: |
-
Cohart after & patients who were treated by
- er excluded (n
£ =570} Patients excluded (n = 594)
H t 3non-scC
§ 591 unknown HPV status

Further patients excluded; for

IMRT-treated OPC patients
— screened {n =970)
improper pre-treatment CT

Patients assessed for eligible imaging {n = 61)
pre-treatment contrast-
enhanced CT scans (n = 376} \ 3 no pre-treatment CT scans
11 na pre-treatment contrast-
1 enhanced CT scans
11 inadequate pre-treatment
OPC patient: ligibl < hanced CT scan
pre-IMRT contrast- 15 o pre-induction cantrast-
enhanced CT scans (n = 315) enhanced CT scan
21 no pre-excisional biopsy
contrast-enhanced CT scan

Eligibility

Included

Additionally, 1st, 2nd, and 3rd place teams will receive a
commemorative trophy, ideally of limited cash value and likely with
hideous design, allowing gentle flaunting of their definitive victory
over anguished peers and colleagues who failed to place in the
challenge. An example is shown below.

REHIIS

Local Control Challenge HPV Challenge

3 teams 2  teams

I~

7/ players

Mo

3 players

7 S entries 7 O entries
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Private Leaderboard - Oropharynx Cancer (OPC) Radiomics Challenge ::
Human Papilloma Virus (HPV) Status Prediction

PR S Score®  Gntries  Last Subemission UTE e - Lt ubimien)

BIG 52 Veera HPV

" oosas s
»
LI e— 080047 &
‘AokanandaGhosh
Nguyen khanh 07e883 8
n et e gald 0.69190 5
@ Junin¥ang oETse 17
2 ler o6t 5
1 USEMoffin oss200 13
8 m  turingeomplete 058275 6
fThe_Courtyard |
A 1988 052054 5

Oropharynx Cancer (OPC) Radiomics Challenge :: Local Recurrence Prediction

3 Nguyen Knann " 4
N o 3
1 wringomplece 006 14

4 Junleang soszs

1 USEMofftL

BIGS2 Veers LRP.

2 2 12
+ ECELLWARRIORSIN s 4
1 Amn 3

w0 2

Congrats to ou

« 1st Place and recipient of a proffered manuscript acceptance (post-editorial review), with waiver of fees
In the well-renowned international, open access ESTRO-sponsored journal; Clinical and Translational Radiation
Oncology (ctRO):

Nguyen Khanh This college kid beat everyone else by *NOT
) . USING RADIOMICS* )
Congrats Nguyen!! But The best is yet to come. You're invited to attend the 19th MICCAI international
conference, taking place in Athens, Greece during the period October 17-21, 2016 in person (no travel support
will be provided) or via Skype to present your winning algorithm and be celebrated among your feliow data
scientists.

« 1st Place and recipient of a proffered manuscript acceptance (post-editorial review), with waiver of fees
in the well-renowned international, open access ESTRO-sponsored journal; Clinical and Translational Radiation
Oncology (ctRO):

BIG-S2_Veera_HPV

Congrats!l But The best is yet to come. You're invited to attend the 19th MICCAI international conference,
taking place in Athens, Greece during the period October 17-21, 2016 In person (no travel support will be
provided) or via Skype to present your winning algorithm and be celebrated among your fellow data scientists.
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TRUTH: Good models are hard to find...so

showing your work helps :)

Machine Learning methods for

Quantitative Radiomic Biomarkers

(Chintan Parmar-a”, Patrick Grossmann*4", Johan Bussink®, Philippe Lambin) &

T Haaing B Gt e
w opian esq [t
nag gy Ba o s e 3
w [—— e o ik e g
el g e A ————

e DR | Do o -
o Suppon vecor madines | M| Wil mrmeion mammaseon
o o | Covdions sl
o Nemes neunr ar [rr——
an [o—— Frer—

| ot e [P
s P e | M — Cassification Methods

pin o
gz

- - s . 5.0 e 3
- I - wiex Wikomnn -

Share your models/approaches!

» Github
— Software repository
» Figshare
— Data repository
» The Cancer Imaging Archive
— Image repository
» Nature Scientific Data
— Publish data/software descriptor on PubMed

Data Descriptor: Matched computed
tomography segmentation and
demographic data for oropharyngeal
cancer radiomics challenges

SCIENTIFIC DATA | 4:170077 | DOI: 10.1038/sdata.2017.77

Patient 1D Numbers_given_sandonly_to_the_paient_sfier_snonymizing ihe. DICOM_PHI_iag (00100020 Patiat ID)

HEV/pi6 siaus ‘Hurman Papilloma Viris siaius, 35 ascszed by HPV DNA in s hybridization” andlor plé proicin expression. via
immunobisochemisty (IHC), with the reslts descrbed ax 1 (Le. Posithe) or 0 (ie. Negatve)

Gender Tatients sex

g a1 dignosis Patients age in yeurs at the tme of disguoss

Race Kimerican Indian/Alaka Natve, Asian, Black. Hispanic, While or NA (Not spplicable)

“Tumor lterdlty Right, e, bilteral

Oropharyas subste of | The subsie of the tumor withia th oropharyas, L. base of onguc (BOT, oasilsol: pasic/pharyageal wallglossopharyngel suls

origin (GPSYother (o single subste of origin could be deaified)

T category mary) d Caner (AICC)
1 Uk el G Cot (U10C) oo sagog e [ ol e 1. T . T M g

N category The N ctoy oo whees o ot thecnces b e ey g s e e 1CC s UICC cace g .

AI0C Stge AICC cancer siage.

Pathological grade | The grade of tumor <ificrentiaton. 1 is decribed as:, 1, 11, IV, 111, 111 o7 NA [(Not assesable)

Sookngans s [Nows cure, o e

‘Smoking Pack-Years | An equivalent numerical value of ifeime tobacct exposure. & pack year is defined s tweaty cigaretes smoked every day for ane year.
(A Nt Assesable) hite/semokingpackpears com/

Table 2. Supplementary Information about the data provided for both challenges.

7/31/2017

42



Be FAIR

FORCEI1

The Future of Research Communications and e-Scholarship

use the FORCE!

https://www.force11.org/node/6062
3. FAIR FOR MACHINES AS WELL A PEOPLE
In eScience, two clearly separated substrates for knowledge discovery can be distinguished.

1. The actual data. which is as a rule beyond human intellectual capacity to analyse and
2. The ‘Explicitome’ (everything we already made explicit in text. databases and any other format to date).

¢ Data should be Findable
Data should be Accessible
Data should be Interoperable
e Data should be Re-usable.

Comment: The FAIR Guiding
Principles for scientific data
FAIR management and stewardship

The Future is

Box 2 | The FAIR Guiding Principles

To be Findable:

F1. (meta)data are assigned a globally unique and persistent identifier

F2. data are described with rich metadata (defined by R1 below)

F3. metadata clearly and explicitly include the identifier of the data it describes
Fi. (meta)data are registered or indexed in a searchable resource

To be Accessible:

AL (meta)data are retrievable by their identifier using a standardized communications protocol
AL the pratocol is open, free, and universally implementable

A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
IL. {meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
2. (metaldata use vocabularies that follow FAIR principles

13. (meta)data include qualified references to other (meta)data

To be Reusable:

R1. meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (meta)data are released with a clear and accessible data usage license

R1.2. (meta)data are associated with detailed provenance

R1.3. (meta)data meet domain-relevant community standards

So, we have some work to do...

* We need
— Better data aggregation & quality
— More transparent modeling
— Shared datasets
— Standards, standards, standards!
— In short, more FAIR-ness ©

7/31/2017
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But our real need is...

* You, the medical
physics
community...

Effective data integration is not easy or fast...
It's just better!

Western Electric
is crossing a telephone
with aTVset.

We are on the edge
of the possible... EEEEEE—. |

looking towards the | =
vistas before us!

Thanks!

Email questions/comments:
« cdfuller@mdanderson.org
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