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Objectives 

• Correlation study between patient specific radiomics data 

and clinical outcomes extracted from lung SBRT  

• Techniques for extracting large amount radiomics data in CT 

and CBCT images used for lung SBRT  

• Effective data modeling for treatment assessment and 

prediction in lung SBRT 

4 

Application s to Lung SBRT 
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Sample Radiomic Features 
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Total 39 

features 

CT Radiomic Features and Pulmonary Function 

CT 

Lung Segmentation 

Feature 
Space 

Pulmonary 

Function Test 

Lafata et al AAPM 2017 

Radiomics features 

extracted from CT-

segmented lungs 

Correlation 

Study 

 Each column: a particular 

patient’s radiomic feature vector,  

 

 

 Collective feature vectors: 

encode radiomic information 

extracted from a patient’s CT-

segmented lungs 

Build A Pulmonary Radiomics Feature Space 
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Feature Analysis: Multivariate analysis using a novel clustering 
algorithm based on Quantum Langevin Clustering (QLC) 

Lafata et al AAPM 2017 
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Step 1: Map radiomics feature vectors, 𝒙𝒊, to a function space, 

𝝍 𝒙 , by associating each feature with a Gaussian of 

width, 𝝈, and constructing their sum (mapping from 
Euclidean space into Hilbert space): 

Feature Clustering: Quantum Langevin Clustering 

Lafata et al AAPM 2017 

 𝝍 𝒙  represents probability density function of data 

 Interpreted as a quantum mechanical wavefunction 

Development of Quantum Langevin Clustering (QLC): 3 steps 

Step 2: Inversely search for corresponding Potential Function, V 𝒙  

Feature Clustering: Quantum Langevin Clustering 

Lafata et al AAPM 2017 

 Satisfies the Schrodinger 

Equation with solution 𝝍 𝒙  
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Thermal  

Jump 

𝑽(𝒙) 

 Global Force: Potential gradient acts globally to 

push vectors downhill  

 Brownian Motion: Acts locally to help vectors 

thermally jump local barriers into locations otherwise 

forbidden, controlled by Temperature T 

Step 3: Propagate feature vectors through V 𝒙  via Langevin dynamics  

Feature Clustering: Quantum Langevin Clustering 

Lafata et al AAPM 2017 
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Correlation Study between QLC and Lung Function 

 

Correlation study using QLC: Map a relationship between the 

radiomic feature space and pulmonary function test (PFT) 

Pulmonary Function 

Test Data 
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Feature Space 

 

 65 patients 

 39 features 

Lafata et al AAPM 2017 
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PC3 

Low Temperature T High Temperature T 

Demonstration of Clustering Analysis 

Cluster 3 Mean 

FEV1 = 0.87 L 

(p < 0.001) 

Cluster 2 Mean 

FEV1 = 1.26 L 

(p = 0.007) 

Cluster 1 Mean 

FEV1 = 1.96 L 

(p = 0.005) 

Results using QLC for Clustering Analysis 

Final state of Quantum Langevin 

Clustering procedure 

Lafata et al AAPM 2017 

 A significant correlation was found 

between radiomics data and FEV1 

 Patients with similar radiomic 

signatures also presented with 

comparable spirometry measurements 
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Results: Clustering Analysis 

Lafata et al AAPM 2017 
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Sensitivity Analysis of Radiomics 

• Effect of imaging noise 

• Effect of motion 

• Effect of HU inhomogeneity 

XCAT Dynamic 

Digital Phantom 

Simulation Study: Effect of Noise Motion 
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XCAT Dynamic 

Digital Phantom 

Simulation Study: Effect of Noise and Motion 

 

Lafata et al AAPM 2017 Increasing Motion 

Increasing Noise 
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  FB (SNR ~ 5)           AIP (SNR ~ 8)        EOE (SNR ~ 3) 

𝑋𝐴𝐼𝑃 𝑋𝐸𝑂𝐸 𝑋𝐹𝐵 

Histology Classification of NSCLC 

 

Logistic Regression 

Modeling 

Lafata et al AAPM 2017 
31 Patient Cohort 

All 

Features 

Selected 

Features 

All features (100%) 

Results: Feature-Specific Model Response 

Selected features (top 

invariant from simulation) 

Lafata et al AAPM 2017 

Effect on histology classification: 

1) image noise and motion – FB, EOE, AIP 

2) feature selection 

(Largest pair-wise 
p-value < 0.001) 

(Largest pair-wise 
p-value < 0.005) 
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Effect of Inhomogeneous HU between CT/CBCT  

M
e

a
n

 H
U

 i
n

 R
e

g
io

n
  
A

 

pCT   CBCT 1   CBCT 2   CBCT 3   CBCT 4  CBCT 5 

A 

A 

Planning CT 

CBCT 

15 Lung SBRT patients 

– 1 planning CT (pCT)  

– 1st CBCT per patient 

Geng et al AAPM 2017 

• Radiomics feature variations on CBCT and planning CT 

• Harmonization between planning CT (pCT) and on-board CBCT images 

Planning CT 

Data Harmonization of CT and CBCT: Workflow 

CBCT prior to 
1st treatment 

B A 

Transformed and 
normalized CBCT 

CBCT 
radiomic 
features 

Feature 
variability 

tests 

pCT 
radiomic 
features 
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VOI extraction 
for radiomics 

Registration 

VOI extraction 
for radiomics 

VOI for norm 
B A 

ITV 

V12Gy 

V12Gy 

ITV 

Geng et al AAPM 2017 

Volumes of Interest (VOIs) Selection for Normalization 

VOIs at the same locations on pCT and registered CBCT (VOI A & B: 

outside of 5 Gy isodose line  tissues in VOIs unchanged by radiation 

24 

A 

A: Uniform 

soft tissue 

20x16x12 

voxels 
B 

B: Lung tissue 

16x20x12 voxels  

D 
D: V12Gy 
in lungs 

C 

C: ITV 

Wilcoxon signed rank test (p<.05) and Bonferroni correction (DOF=55) were used 
to test each pair of feature and to identify number of variable features before and 
after each harmonization 

Geng et al AAPM 2017 
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Feature Variability Reduction on ITV 

25 

# of variable 
features before 
harmonization 

Features 
 

VOI: Soft 
tissue (A) 

VOI: Lung 
tissue (B) 

VOI: 
Average 
of A & B 

VOI: 
ITV 

1 Gray level histogram 0% 0% 0% -100% 

4 Gray level co-
occurrence 

25% -200% 50% 50% 

7 Gray level run length 85.7% -14.2% 50% 42.9% 

8 Gray level size zone 37.5% -12.5% 12.5% 37.5% 

0 Neighborhood gray 
tone difference 

0% -100% 0% -100% 

For radiomics calculation in ITV, harmonization with VOI in soft tissue 

or average of 2 is more effective in feature variability reduction 

Feature Variability Reduction on Lung V12Gy 

26 

Feature extraction for ITV 

Features # of variable features 
before harmonization 

VOI: Soft 
tissue (A) 

VOI: Lung 
tissue (B) 

Average 
of A & B 

VOI: 
V12Gy 

Gray level histogram 1 100% 0% 100% 100% 

Gray level co-
occurrence 

0 0% -1400% 0% 0% 

Gray level run length 2 0% -100% 50% 100% 

Gray level size zone 1 0% -200% 0% 0% 

Neighborhood gray 
tone difference 

0 0% -200% 0% -200% 

For radiomics calculation in V12 Gy in lungs, harmonization with average of 2 VOIs 
provided the highest efficiency of feature variability reduction. 

Geng et al AAPM 2017 

Summary 

 

• Radiomics features are useful for treatment 

assessment  

• Radiomics features are affected by motion, noise and 

data variability 

• Quantification of radiomics features are important for 

their clinical applications 
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Thank you for your attention 
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Q1 Which of following is not a radiomics feature? 

 a. Grey-level co-occurrence matrix correlation 

 b. Grey-level co-occurrence matrix energy 

 c. Grey-level co-occurrence matrix homogeneity 

 d. Morphology 

 e. Mean dose 

Answer: e  

Ref:  Sarah A. Mattonen et al, Detection of Local Cancer Recurrence After 

Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician 

Performance Versus Radiomic Assessment. Int J Radiation Oncol Biol 

Phys, Vol. 94, No. 5, pp. 1121-1128, 2016 

http://dx.doi.org/10.1016/j.ijrobp.2015.12.369 
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