Correlating Radiomics Information with Clinical Outcomes for Lung SBRT

Fang-Fang Yin, PhD Duke University Medical Center

AAPM 2017 Denver CO

Disclosure

• This research is partially funded by a research grant from Varian Medical Systems

Acknowledgements

Radiation Oncology

- Kyle Lafata
- Jing Cai
- Jim Chang
- Ruiqi Geng
- Chris Kelsey
- Julian Hong
- Lei Ren
- Chunhao Wang
- Jackie Wu

U

Physics Jian-Guo Liu Zhennan Zhou

Objectives

- Correlation study between patient specific radiomics data and clinical outcomes extracted from lung SBRT
- Techniques for extracting large amount radiomics data in CT and CBCT images used for lung SBRT
- Effective data modeling for treatment assessment and prediction in lung SBRT

Application s to Lung SBRT

Sample Radio	omic Features				
Total 39 features	Autocorrelation Cluster Prominence Cluster Shade Cluster Tendency Contrast Correlation Differential Entropy Dissimilarity	Intensity	Energy Entropy Kurotsis Skewness	Lung Volume Lung Surface Area	
Line Textur	20 Energy 20 Energy Homogeneity 1 Homogeneity 2 Information Measure of Correlation 1 Information Measure of Correlation 2 Inverse Difference Moment Normalized Inverse Difference Mommitzed Inverse Difference Mommitzed National Probability Sam Entropy Sam Entropy Sam Christiance Variance	Coarse Texture	Short Run Em Long Run Emg Gray Level No Run Length Ni Run Percentaj Low Gray Lev High Gray Lev Short Run Low Short Run High Long Run Low Long Run High	phasis phasis n-uniformity ge el Run Emphasis el Run Emphasis h Gray Level Emphasis (Gray Level Emphasis (Gray Level Emphasis	1

-		

Feature Analysis: Multivariate analysis using a novel clustering algorithm based on Quantum Langevin Clustering (QLC) Lafata et al AAPM 2017

Feature Clustering: Quantum Langevin Clustering

Development of Quantum Langevin Clustering (QLC): 3 steps

<u>Step 1:</u> Map radiomics feature vectors, x_i , to a function space, $\psi(x)$, by associating each feature with a Gaussian of width, σ , and constructing their sum (mapping from Euclidean space into Hilbert space):

$$x_i = \langle x_1, x_2, \cdots, x_n \rangle \to \psi(x) = \sum_{i=1}^m e^{-\frac{1}{2\sigma^2}(x-x_i)^2}$$

 $\checkmark \psi(x)$ represents probability density function of data

✓ Interpreted as a quantum mechanical wavefunction

Lafata et al AAPM 2017

Feature Clustering: Quantum Langevin Clustering

<u>Step 2:</u> Inversely search for corresponding Potential Function, V(x)

$$\psi(x) = \sum_{l=1}^{m} e^{-\frac{1}{2\sigma^2}(x-x_l)^2}$$

$$\downarrow$$

$$V(x) = \frac{\sigma^2}{2} \nabla^2 \psi(x) + E$$
Satisfies the Schrodinger
Equation with solution $\psi(x)$

~

Lafata et al AAPM 2017

Feature Clustering: Quantum Langevin Clustering

<u>Step 3:</u> Propagate feature vectors through V(x) via Langevin dynamics

Lafata et al AAPM 2017

Correlation Study between QLC and Lung Function 🕔

Correlation study using QLC: Map a relationship between the radiomic feature space and pulmonary function test (PFT)

Lafata et al AAPM 2017

Lafata et al AAPM 2017

Sensitivity Analysis of Radiomics

- Effect of imaging noise
- Effect of motion
- Effect of HU inhomogeneity

Simulation Study: Effect of Noise Motion

Simulation S	tudy: I	ffect	of	lois	e ar	nd N	lotic	on		
XCAT Dynamic Digital Phantom	мк	z 13	Inci	reasir	ng No	pise M	M	F4	14	F47
a	4					4		A	L	
% Char			M	10						
Value			14	64	64 	c.3	64		4	
eatrice			Cm	*1		M3	**	N-S		
			Inci	reasin	g Mot	tion	Laf	ata et a		1 2017

Results: Feature-Specific Model Response Effect on histology classification: 1) image noise and motion – FB, EOE, AIP 2) feature selection Lafata et al AAPM 2017 X_{EOE} (0.66) $X_{EOE}(0.77)$

Effect of Inhomogeneous HU between CT/CBCT

- Radiomics feature variations on CBCT and planning CT
- · Harmonization between planning CT (pCT) and on-board CBCT images

Volumes of Interest (VOIs) Selection for Normalizati

VOIs at the same locations on pCT and registered CBCT (VOI A & B: outside of 5 Gy isodose line \rightarrow tissues in VOIs unchanged by radiation

Wilcoxon signed rank test (p<.05) and Bonferroni correction (DOF=55) were used to test each pair of feature and to identify number of variable features before and after each harmonization Geng et al AAPM 2017

Feature Variability Reduction on ITV

# of variable features before harmonization	Features	VOI: Soft tissue (A)	VOI: Lung tissue (B)	VOI: Average of A & B	VOI: ITV	
1	Gray level histogram	0%	0%	0%	-100%	
4	Gray level co- occurrence	25%	-200%	50%	50%	
7	Gray level run length	85.7%	-14.2%	50%	42.9%	
8	Gray level size zone	37.5%	-12.5%	12.5%	37.5%	
0	Neighborhood gray tone difference	0%	-100%	0%	-100%	
For radiomics calculation in ITV, harmonization with VOI in soft tissue or average of 2 is more effective in feature variability reduction						

Feature Variability Reduction on Lung V12Gy

Features	# of variable features before harmonization	VOI: Soft tissue (A)	VOI: Lung tissue (B)	Average of A & B	VOI: V12Gy
Gray level histogram	1	100%	0%	100%	100%
Gray level co- occurrence	0	0%	-1400%	0%	0%
Gray level run length	2	0%	-100%	50%	100%
Gray level size zone	1	0%	-200%	0%	0%
Neighborhood gray tone difference	0	0%	-200%	0%	-200%

For radiomics calculation in V12 Gy in lungs, harmonization with average of 2 VOIs provided the highest efficiency of feature variability reduction.

Geng et al AAPM 2017

Summary

_

- Radiomics features are useful for treatment
 assessment
- Radiomics features are affected by motion, noise and data variability
- Quantification of radiomics features are important for their clinical applications

Thank you for your attention

- Q1 Which of following is not a radiomics feature?

 - a. Grey-level co-occurrence matrix correlation b. Grey-level co-occurrence matrix energy c. Grey-level co-occurrence matrix homogeneity d. Morphology

 - e. Mean dose

е

Answer: Ref:

e Sarah A. Mattonen et al, Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment. Int J Radiation Oncol Biol Phys, Vol. 34, No. 5, pp. 112-1128, 2016 http://dx.doi.org/10.1016/j.ijrobp.2015.12.369