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The Era of Precision Oncology
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* Biomarkers can be used to inform diagnosis and
prognosis, or to select appropriate therapy.
* PSA level, Oncotype Dx recurrence score, EGFR activating
mutation.
¢ Conventional: biological molecules measured in tissue,
serum, or circulation, at DNA, RNA, or protein level.
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Mainstay of current oncology practice
— NGS: rapid, high-throughput profiling at reduced cost
— Genome, transcriptome, proteome, metabolome, etc
— Exquisite molecular detail, but...

* Invasivg e

N, ez s | ", w0
— requires biopsy or surgery é; "y \
)
* Biased S j
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* The current FDA-NIH Biomarker Working Group definition includes
radiographic characteristics.
* Routine, noninvasive, repeatable, whole tumor & surrounding tissue
* Currently based on radiologist’s visual assessment
— Subjectt
— Qualitative, not quantitative
~ Low-throughput (one or few: RECIST)

: inter-/intra-observer variations
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* Quantitative, high-throughput extraction of information
from medical images

— Converts pictures to ‘omic’ data

¢ Cotrelate with clinical outcomes: biomarkers

¢ Correlate with molecular data: potential driving biology

-

-

Feature extraction Analysis

Imaging Segmentation
7

Lambin et al, Eur J Cancer, 2012

* Excellent local control after SABR.

* Distant metastasis occurs in a significant proportion of patients.

* Most patients do not receive adjuvant systemic therapy.

* Need to accurately identify patients at highest risk of recurrence,
who might benefit from additional therapy.

101 stage | NSCLC patients treated with SABR

Before 2011 €——— ——> After 2011

(31 patients)
Radiomics
Signature

Prediction of distant
is risk

Wu et al, Radiology, 2016
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(70 patients)

:
Discovery set i Validation set

Radiomics Features

Pre-Qualification

Robust & Non-
Redundant Features

Survival analysis (Cox
regression + LASSO)
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¢ Our radiomic feature set includes:

— 6 statistical (mean, max, variance, skewness, etc)

— 5 SUV histogram

— 2 morphology (CT)

-3 GLCM

— 24 Wavelet . Entropy: 0.32 | Enlrop
57 different ways to measure

— 30 Laws

intra-tumor heterogeneity
* Total: 70 quantitative image features.

Wu et al, Radiology, 2016 10

Discovery of a Radiomic Signature

¢ The final radiomic signature was:
* 21X SUVjeq 2cc + 3.6 X Gauss_ClusterShade

Discovery Cohort (n=70)
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ostic Imaging Biomarker in Pancreatic Cancer

* A radiomic signature of FDG-PET improved upon SUV and tumor
volume (C-index: 0.67 vs 0.58).
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Cui et al. JROBP, 2016 15
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SUVpzy = 5.58

Volume = 37.1cm*

Proposed Signature = -0.035
0S = 657days

Cui et al. IJROBP, 2016

SUViay = 6.10

Volume = 35.9cm*
Proposed Signature = 0.526
0S = 248 days

* Aggregate image features from the bulk tumor

— Assuming tumor is well mixed

¢ Clonal evolution causes regional differences in a tumor.

* Habitat imaging to identify ‘high-risk’ subregions

Sottoriva, et al. PNAS, 2013 b

Intra-Tumor Partitioning of Lung Tumots

Patent | Patient 2

Patient n
b

Step 3: Population-level clustering into tumor subregions
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The high-risk subregion represents the metabolically
= active & heterogeneous solid component of the tumor.

Image features Clusters
E

Super-voxels

CcT PET  Entropy ~ Entropy
Wu et al. IJROBP, 2016 (PET) (%)}
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Two Patients with Stage IIIb NSCLC
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Alive after 4 years, no out-of-field progression Deceased after 3 months

Prognostic Value in NSCLC (All Stage)
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* Intra-tumor partitioning based on
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* A 5-feature radiomic signature predicted overall survival,
independent of age, gender, extent of resection.

Discovery: TCGA Cohort Validation: Japanese Cohort
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Initial Work on Radiogeno

a o
o
* Radiogenomics in HCC Tumc - wer e, mirum

— First study to show that CT image

Aftonuaticn heterogenely, maxsmum

features correlate with global gene

i |
expression. ol
N .
— 28 image features predicted the = I
expression of 78% out of 6732 genes | |

in 32 patients.

Segal et al, Nat Biotechnol 2007

* Radiogenomics of GBM A

— Identified image features in Infiltrative

brain MRI correlated with gene
expression in 22 patients.

— Tumor contrast enhancement
and mass effect predicted
hypoxia and proliferation gene

expression programs.
— Infiltrative imaging phenotype
was correlated with clinical

outcome.

Diehn et al, PNAS, 2008

Gene expression and CT image data from 26 NSCLC patients

Linear models predict metagenes by 180 image features, vice versa

— Accuracy: 59%—-83%, or 65%—86%

* Tumor size, edge shape, and sharpness ranked highest for prognostic
significance

Imaging features
A
Extract features - EE
Genes. Metagenes|
B e

Predicted edge sharpness composite 1

1 2 W 4
Survival (mon)

L |

Study data
| dais

Survival probability

Public data

Metagenes  Clinkcal
data

Gevaert et al, Radioloay, 2012
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Limitations of Initial Work

* Proof of concept

* Small number of samples (~20-30)

 Large number of variables: false discovery

¢ Lack independent validation

b ¥
1. Understand how a biological | G -

. - process is reflected at imaging. \\;‘

m 2. Understand the biological &y
h basis behind an image feature s \$

Type 1 Radiogenomic Association

* What imaging features are associated with a biological process?
— EGFR, KRAS mutation, ALK rearrangement in NSCLC

* Can imaging be used to predict genomic alternations?

— 385 patients from a single institution e
o

a
— 30 CT features to assess EGFR mutation g4

— smaller size, homogeneous enhancement, *7

and pleural retraction

— Good accuracy

— Clinical value uncertain

—-— Ganical feanures slong; AUC = 069
—— Gancal el CT festures; AUC = 0778

01 02 03 04 05 06 07 08 08 10

Liu et al, Radiology, 2016 1-Specificity

10
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* What molecular pathways or biological processes are associated
with a specific imaging phenotype?
— Maximum SUV at FDG-PET prognostic of survival in NSCLC

— 14 differentially expressed genes for SUVmax in 26 patients (FDR < 0.20)
— Linked with survival and epithelial-mesenchys:

| transition.

— Small, exploratory analysis

ol SeaoT

— Additional validation required

— No mechanistic evidence.

‘Yamamoto, et al, Radiology, 2016
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Quantitative Pleural Contact Index i

* Explicitly quantify relation of tumor and surrounding pleura

* PCI has a high degree of reproducibility for multiple contours
(ICC = 0.87).

og;  Pleural contact length
= Dmax

A B

Lee et al. Eur Radiol, 2017. in press

Prognostic Value of Pleural Contact in Stage I NSCLC

PCI was significantly associated with overall survival in both
discovery and validation imaging cohorts.

PCI also stratified patients for distant metastasis.

Pleural attachment was not prognostic.

Discovery cohort Validation cohort
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Complementary Value PCI to Clinical Features

* PCI further stratified patients within clinical stage IA, IB
subgroups.

* PCI was independently associated with sutvival beyond age,

gender, tumor size, and histology.

Stage IA N Stage Il§

Overat Surries

s |z rases s | 7 |
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Molecular Correlates of Pleural Contact in NSCLC

In 89 patients, extracellular matrix (ECM) remodeling was
enriched among genes correlated with PCI (FDR=0.005).
* Role of ECM remodeling in cancer invasion and metastasis
Built a genomic classifier for PCI (10-fold CV accuracy: 78%).

20

Pleural Contact Inex

05 10 18

Ton 50 Genes Cosreated wih 1

chssart custer2

Validation of Prognostic Value of PCI in Stage I NSCLC

The genomic surrogate of RN
PCI: =
e stratified patients for
overall survival in 4
cohorts (775 patients).
¢ remained a strong,

independent prognostic N \ mae ) \ =
factor adjusting for age, | \ 1 i

gender, and tumor stage.

Lee et al. Eur Radiol, 2017. in press.
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f Breast Cancer Parenchyma

* Breast parenchyma enhances to various extents on DCE MRI.

* Background enhancement has been linked to breast cancer risk,
but molecular mechanisms are poorly understood.

* Goal: determine biological underpinnings and assess proguostic
relevance of parenchymal enhancement.

BI-RADS 2015

age Features
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Wuet al. Radiology, 2017. in press

Radiogenomic Map

Radiogenomic map for tumor-
chyma Dendrugram

Gene modules

= "

TCGA Cohort (n=

Entira Cohort:

Tumer ANA-Seq
{n=1035)

P Parenchymal heterogeneity on

DCE MRI was associated with the

TNF signaling pathway

(Hypergeometric test P < 0.0001).
39

Quantitative image features
* s S e 3 i ) DR
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Wauet al. Radiology, 2017. in press
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The imaging subtypes were not. with intrinsic molecular as

luminal A, luminal B, basal-like, HER2-enriched (Person’s Chi-squared test P = 0.87)
Wuet al. Clin Cancer Res 2017
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The imaging subtypes were independent predictors of RFS adjusting for cinical and pathological factors.
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Challenges of Radio

Reproducibility and robustness

— Multi-center validation

Statistical pitfalls

— False discovery or over-fitting due to multiple testing.

Biological interpretation difficult

— Radiogenomics could help, with careful use.

8/1/2017
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* Radiomics is a useful tool to discover new imaging biomarkers.

— Gross tumor, intratumoral, peritumoral

* Integrating imaging with molecular data may improve biological
understanding.

* Prospective validation is essential to truly establish the value of
imaging in precision medicine.
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