

Biomarkers as a Pillar of Precision Oncology

```
· Biomarkers can be used to inform diagnosis and
```

- prognosis, or to select appropriate therapy. • PSA level, Oncotype Dx recurrence score, EGFR activating
- mutation.
 Conventional: biological molecules measured in tissue, serum, or circulation, at DNA, RNA, or protein level.

Tissue-based Molecular Biomarkers

- Mainstay of current oncology practice

 NGS: rapid, high-throughput profiling at reduced cost
 - NGS: rapid, nign-throughput proteining at reduced cos
 Genome, transcriptome, proteome, metabolome, etc
 - Exquisite molecular detail, but...
- Invasive
- requires biopsy or surgery
- Biased
- samples a small portion of a tumorIncomplete
- does not characterize tumor anatomy or in vivo physiology (e.g., blood flow)

5

Imaging-based Biomarkers

- The current FDA–NIH Biomarker Working Group definition includes radiographic characteristics.
- · Routine, noninvasive, repeatable, whole tumor & surrounding tissue
- · Currently based on radiologist's visual assessment
 - Subjective: inter-/intra-observer variations
 - Qualitative, not quantitative
 - Low-throughput (one or few: RECIST)

Radiomics: the Process

- Quantitative, high-throughput extraction of information from medical images
- Converts pictures to 'omic' data
- · Correlate with clinical outcomes: biomarkers
- · Correlate with molecular data: potential driving biology

Lambin et al, Eur J Cancer, 2012

Prognostic Biomarkers in Early-Stage NSCLC

8

7

- Excellent local control after SABR.
- Distant metastasis occurs in a significant proportion of patients.
- · Most patients do not receive adjuvant systemic therapy.
- Need to accurately identify patients at highest risk of recurrence, who might benefit from additional therapy.

Identifying Prognostic Imaging Biomarker

Wu et al, Radiology, 2016

Radiomic Analysis of PET/CT Our radiomic feature set includes: - 6 statistical (mean, max, variance, skewness, etc) - 5 SUV histogram - 2 morphology (CT) - 3 GLCM - 24 Wavelet - 30 Laws Total: 70 <u>quantitative</u> image features.

Wu et al, Radiology, 2016

Wu et al, Radiology, 2016

Wu et al, Radiology, 2016

Prognostic Imaging Biomarker in Pancreatic Cancer

14

Basic/Translational Science Abstract Award, ASTRO 2015

Pre-SRRT PET images

SUV_{max} = 5.58 Volume = 37.1cm³ Proposed Signature = -0.035 OS = 657days Cui et al. IJROBP, 2016

Volume = 35.9cm³ Proposed Signature = 0.526 OS = 248 days

Beyond Radiomics: Multi-Region Analysis

17

- <u>Aggregate</u> image features from the bulk tumor – Assuming tumor is well mixed
- Clonal evolution causes <u>regional</u> differences in a tumor.
- · Habitat imaging to identify 'high-risk' subregions

ottoriva, et al. PNAS, 2013

T1w

Cui et al, Radiology, 2016

metric MRI	Summary of Qu Features	Summary of Quantitative Imaging Features	
	imaging Feature	Interpretation	
diomic features for e	ach Regional	Regional: First-order Statistics	
diofine reatures for e	Mean	Average intensity level	
and gross tumor	Variance	Heterogeneity	
and gross tumor.	Skewness	Heterogeneity	
	Kartosis	Heterogeneity	
	Entropy	Heterogeneity	
	Reg	Regional: Textures	
(att man it	Contrast	Heterogeneity	
	enhancement		
CONSTRUCTION A	Correlation	Heterogeneity	
ASIED TREASEN	Energy	Heterogeneity	
	Hemogeneity	Heterogeneity	
	A Holistic: Mor	Holistic: Morphologic Characteristics	
1	Volume	Turnor extent	
	Surface area	Turnor extent and	
		shape complexity	
	Sphericity	Shape complexity	
	Holistic	: Joint Histogram	
O FLAID Turner D	Quartiles	High-risk turnor volum	
2W FLAIR TUMOR P		High-risk turnor volum	

Prognostic imaging signature in GBM • A 5-feature radiomic signature predicted overall survival, independent of age, gender, extent of resection. Discovery: TCGA Cohort Validation: Japanese Cohort <median pred >median pred Censored 0.9 0.8 support of the second seco P-value<0.0001 Concordance Index=0.75 0.8 0.7 0.6 0.5 0.4 P-value=0.018 Concordance Index=0.67 0.3 0.1 500 60 Time 24 Time Cui et al, Radiology, 2016

Initial Work on Radiogenomics

- Radiogenomics in HCC
 First study to show that CT image features correlate with global gene expression.
 - 28 image features predicted the expression of 78% out of 6732 genes in 32 patients.

а	Mod cell p	Jule 697: rolleration	į.		
Turne	or - liver	difference	minimur	n.	
Atten	uation h	eterogene	l Ily, maxin	num	
-		-			
Tum	or margi	n score, m	aximum		
Contraction of the			GM CC CH ESF CD	VN 142 11 77	
			VEC CDC PCI	F 28 IA	
			MC	M5 M8	

Segal et al, Nat Biotechnol 2007

Radiogenomics of GBM Identified image features in brain MRI correlated with gene scynession in 22 patients. Tumor contrast enhancement

and mass effect predicted hypoxia and proliferation gene expression programs.
Infiltrative imaging phenotype was correlated with clinical dilitative internation intern

Diehn et al, PNAS, 2008

outcome.

Initial Work on Lung Cancer Radiogenomics

- · Gene expression and CT image data from 26 NSCLC patients
- Linear models predict metagenes by 180 image features, vice versa

 Accuracy: 59%–83%, or 65%–86%
- Tumor size, edge shape, and sharpness ranked highest for prognostic significance
 Protected edge sharpness composite

Limitations of Initial Work

- · Proof of concept
- Small number of samples (~20-30)
- Large number of variables: false discovery
- Lack independent validation

Type 1 Radiogenomic Association

- **-**

What imaging features are associated with a biological process?
 EGFR, KRAS mutation, ALK rearrangement in NSCLC

1.0

0.5 0.4

0.3

0.2

- · Can imaging be used to predict genomic alternations?
 - 385 patients from a single institution
 - 30 CT features to assess EGFR mutation
 - smaller size, homogeneous enhancement, 0.7

and pleural retraction

- Good accuracy

- Clinical value uncertain

Liu et al, Radiology, 2016

Clinical Natures alone; AUC = 0.69 Olinical and CT features; AUC = 0.778

Type 2 Radiogenomic Association

· What molecular pathways or biological processes are associated with a specific imaging phenotype?

- Maximum SUV at FDG-PET prognostic of survival in NSCLC
- 14 differentially expressed genes for SUVmax in 26 patients (FDR < 0.20)
- Linked with survival and epithelial-mesenchymal transition.
- Small, exploratory analysis
- Additional validation required
- No mechanistic evidence.

Yamamoto, et al, Radiology, 2016

- · Explicitly quantify relation of tumor and surrounding pleura
- · PCI has a high degree of reproducibility for multiple contours (ICC = 0.87).

Lee et al. Eur Radiol, 2017. in press

- · PCI was significantly associated with overall survival in both discovery and validation imaging cohorts.
- · PCI also stratified patients for distant metastasis.
- Pleural attachment was not prognostic.

Complementary Value PCI to Clinical Features

- PCI further stratified patients within clinical stage IA, IB subgroups.
- PCI was independently associated with survival beyond age, gender, tumor size, and histology.

Molecular Correlates of Pleural Contact in NSCLC

- In 89 patients, extracellular matrix (ECM) remodeling was enriched among genes correlated with PCI (FDR=0.005).
 Role of ECM remodeling in cancer invasion and metastasis
- Built a genomic classifier for PCI (10-fold CV accuracy: 78%).

Radiogenomics of Breast Cancer Parenchyma 🐇

- Breast parenchyma enhances to various extents on DCE MRI.
- Background enhancement has been linked to breast cancer risk, but molecular mechanisms are poorly understood.
- Goal: determine biological underpinnings and assess <u>prognostic</u> relevance of parenchymal enhancement.

BI-RADS 2015

Wu et al. Radiology, 2017. in press

Wu et al. Clin Cancer Res 2017

Challenges of Radiomics

- · Reproducibility and robustness
- Multi-center validation
- Statistical pitfalls
 - False discovery or over-fitting due to multiple testing.
- Biological interpretation difficult
 - Radiogenomics could help, with careful use.

Conclusion

- Radiomics is a useful tool to discover new imaging biomarkers.
 Gross tumor, intratumoral, peritumoral
- Integrating imaging with molecular data may improve biological understanding.
- Prospective validation is essential to truly establish the value of imaging in precision medicine.

Acknowledgment

- Lab members:
 - Yi Cui
 - Jia Wu
 - Juheon Lee – Bailiang Li
- Funding:
 - NIH R00CA166186
 - NIH R01CA193730

- Collaborators
 Max Diehn
 - Billy Loo
 - Daniel Rubin
 - Sandy Napel
 - Allison Kurian
 - Erqi Pollom
 - Wendy Hara
 - Daniel Chang
 - Albert Koong
 - Quynh Le