Roles of in vivo dose verification in proton therapy

AAPM 2017

Jerimy C. Polf and Sam Beddar
Department of Radiation Oncology
Maryland Proton Treatment Center
University of Maryland School of Medicine

Disclosures

Research Funding: National Institutes of Health National Cancer Institute award R01CA187416.

- Prompt gamma imaging for proton radiotherapy treatment verification.

Overview

- Uncertainties in proton dose delivery
- Effect of uncertainties on distal and lateral dose delivery profiles
- In vivo verification methods
- Conclusions
Overview

- Protons Stop!
- Photons don’t.
- Maximum Proton dose at target
- Maximum Photon dose at d_{max}.

This gives many pictures of how wonderful Protons are... in a perfect world.

In reality there are many uncertainties in Proton treatment delivery due to a wide range of factors:
- Treatment setup,
- CT# conversion,
- Tumor motion,
- Tissue response to proton irradiation
- Etc.

Dose Within and Distal to tumor

Photons: little effect
Protons: significant effect

Overview

Consequences for proton therapy:
- Limit usable beam angles.
- Increase dose to normal tissue.
- Decrease dose uniformity in tumor volume.

Managing Uncertainties

1. Dose Calculation
2. Treatment Delivery

Range uncertainty formula:

\[-3.5\% \text{(beam range)} + 1-2 \text{ mm}\]

Managing Uncertainties

- Currently expand margins

 \[-3.5\% \text{(beam range)} + 2 \text{ mm}\]
Distal Range Uncertainties

- Reduce coverage to the ITV
- “Over range” into heart
 Increasing dose to heart

Lateral Profile Uncertainties

What about tumors with critical structures lateral to target volume

Main points of attack (preferred beam angles)
- Water Equivalent Path length (WEPL):
 2–4 cm
- Oblique angle path is mostly homogeneous.
- Range uncertainty near eye < 3 mm
 However,
 - A patient shift to the left by only ~2 mm
 would result in full dose to eye!

Distal and Lateral Profile Uncertainties

How would we treat this?

- Use eye-deviation technique to avoid dose to lens/cornea.
- Conform dose distally to avoid optic nerve
- Deviation of ~2 mm could result in full dose to lens/cornea.
- Range over shoot of ~2 mm gives full dose to optic nerve.
Managing Uncertainties: in vivo dosimetry methods

- Pre-treatment delivery
 - proton radiography/CT

- During treatment delivery
 - induced ultrasound
 - in-room PET imaging
 - prompt gamma imaging

- Post-treatment delivery
 - in-room PET Imaging

- Follow up assessment
 - MRI imaging

Paganetti, PMB, 57 (2012)

Managing Uncertainties: Pre-treatment

Ion radiography / tomography for:
- Direct longitudinal SP determination
- Daily localization image guidance

pre-treatment verification of:
- Water equivalent path length
- Stopping power ratio

Managing Uncertainties: pre/during/post treatment

- Induced secondary emission

Induced ultrasound imaging
In-room PET imaging
Prompt gamma imaging
Managing Uncertainties: pre/during/post treatment

- Induced Ultrasound imaging
- Prompt gamma imaging

Bragg peak Phantom entrance

Managing Uncertainties: pre/during/post treatment

- Induced Ultrasound imaging
- Prompt gamma imaging

Prompt gamma timing

- Measure time of prompt gamma arrival with respect to beam on time.
- Convert time-profile to depth profile using stopping power information from CT
- Compare measured depth profile to Monte Carlo/analytical calculations
- Initial prototype testing in clinical beams.

Hueso-Gonzalez et al, Frontiers in Oncology (2016)

Prompt gamma timing

- Measure 1D profile of PG emission
- Compare measured 1D profile to Monte Carlo/analytical calculations
- Clinical trials underway.

Xie et al, IJROBP (2017)

Slit camera

- Measure 1D profile of PG emission
- Compare measured 1D profile to Monte Carlo/analytical calculations
- Clinical trials underway.
Managing Uncertainties: pre/during/post treatment

- Induced Ultrasound imaging

- Prompt gamma imaging

- Measure emitted prompt gamma spectra
- Determine concentration of 16O and 12C.
- Compare PG spectra to calculations of nuclear reaction models to determine range of proton beam
- Clinical trials to start soon.

Managing Uncertainties: pre/during/post treatment

- Compton imaging

- Reconstruct 3D image of PG emission
- Register to CT images
- Compare and analyze dose delivery
- Clinical prototype testing underway.

Managing Uncertainties: during/post treatment

- In room PET imaging

- A prediction of the expected induced PET isotope distribution is generated
- The induced PET isotope distribution is then measured with patient of the table
- Differences in the measured and predicted distributions are used to determine changes in the day-to-day dose delivery.
Managing Uncertainties: during/post treatment

- In room PET imaging
 - On line PET imagers: connected to gantry
 - Off line PET imagers: in room, separate from gantry

Managing Uncertainties: Follow up verification

After completion of treatment course

- changes in appearance of tissues in MRI scans shown to correlate to dose delivery in vivo.

Managing Uncertainties: Workflow

1. Patient setup/alignment
 - x-ray imaging
 - CBCT
2. Deliver small "test" dose
 - Acquire in vivo image
 - Proton radiography/CT
 - Induced ultrasound
 - Prompt gamma imaging
 - Analyze/verify beam delivery
3. Deliver full treatment field dose
 - Measure secondary emissions
 - Induced ultrasound
 - In room PET imaging
 - Prompt gamma imaging
4. Final Field?
 - Yes
 - No

5. Post treatment PET imaging

6. Send acquired in vivo images (steps 3 and 5) for post treatment analysis
 - Treatment planning system
 - dose analysis software

Patient follow up
7. Treatment evaluation on MRI
Summary

- Advantage of protons:
 - Protons Stop: This allows delivery of extremely conformal dose distributions.

- Small uncertainties in our ability to determine in vivo range limit our ability to take full advantage of this fact.

- Therefore, there is a need for in vivo dosimetry/imaging to verify proper treatment delivery with respect to both:
 - the distal beam range
 - lateral extent of dose profile

Questions

\[Y = -4 \text{ mm} \]
\[Y = -2 \text{ mm} \]
\[Y = 0 \text{ mm} \]
\[Y = +2 \text{ mm} \]
\[Y = +4 \text{ mm} \]

(a)

(b)