Roles of *in vivo* Dose Verification in Brachytherapy

AAPM 2017 Denver

Kari Tanderup, PhD Aarhus University Hospital Denmark

Disclosures

Research funding

- Danish Research Council
- Danish Cancer Society
- Varian Medical Systems
- Elekta (*in vivo* dosimetry in brachytherapy)

Planning, prescription and delivery

Planning, prescription and delivery

Dosimetric and geometrical treatment verification

Geometric verification:

- Purpose
 - Anatomy in place
 - Source/catheters aligned
- Methods
 - Direct measurements
 - Imaging
 - Tracking: EM, MR or optical

Dosimetric verification:

- Purpose
 - Dose to Target or OAR
- Methods
 - In vivo dosimetry

Hybrids of dosimetric and geometrical verification

Geometric verification

Dosimetric verification

Imaging with dose reconstruction

In vivo dosimetry with geometric information

Which errors happen during BT? U.S. Nuclear Regulatory Commission reports: 2005-2013

QUALITY ITEM #		S	DETECTABILITY	
Nt Examples – most (in principle) detecta	able:	र)	IVD	IMAGING
sc - Wrong guide tube, 12 cm too short	Γ		\checkmark	
Af - Obstructed GYN catheter for HDR (60	Gy		\checkmark	
Af to skin between thighs)			\checkmark	
Pa - Inverted catheter direction (not detected)	ed by			✓
 Pa Inverted catheter direction (not detected planners nor TPS) 			✓	
 Catheter not fully inserted into tandem Radiation therapist pushed "auto 		1	(√)	✓
radiography" rather than "treatment" b	utton	4	\checkmark	\checkmark
\rightarrow 9 times the intended dose		5	\checkmark	
Sc - Incorrect target area entered			\checkmark	
Interchanged guide tubes			\checkmark	
Recording of dose			\checkmark	
Other (e.g. defective catheter)		7	?	?

Results of questionnaire after GEC ESTRO treatment verification seminar, Brussels 2014

Have you ever encountered any errors/events or major deviations in brachytherapy delivery?

- **1.** Applicator movement
- 2. Incorrect connection, wrong catheter length, wrong reconstruction
- **3.** Wrong catheter direction, wrong needle depth
- 4. Wrong patient, swopped reconstruction
- 5. None
- 6. None
- 7. Incorrect connection, wrong applicator length
- 8. Incorrect connection, wrong applicator length
- 9. Incorrect connection, wrong reconstruction, afterloader malfunction, applicator movement

Importance of treatment verification for brachytherapy

• "High" risk of errors (as compared to EBRT):

- Manual procedures: reconstruction of catheters, applicator afterloader connection, applicator length
- "Mechanical" equipment: cables, transfer tubes, applicators
- High impact of errors/uncertainties:
 - High dose gradients
 - Hypofractionation
- Challenge: Low patient volume (as compared to EBRT):
 - Investment
 - Expertise (smaller critical mass of experts)

How much is *in vivo* dosimetry utilised?

Patterns of care study Europe (2007)*:

- *in vivo* dosimetry available in 23% of centers
- French survey of 15 centers by Estelle Spasic (2017)**:
 - *in vivo* dosimetry not performed in any center

*F Guedea et al, "Patterns of care for brachytherapy in Europe: Updated results", Radiotherapy and Oncology 97 (2010) 514– 520.

** Estelle Spasic, Institute Curie, Paris, personal communication

Why is in vivo dosimetry not systematically used?

Routine rectal diode in vivo dosimetry, Aarhus University Hospital:

FIG. 1. Rectal IVD in PDR ¹⁹²Ir cervix cancer BT with tandem ring applicator for BT fractions 1 (BT1) and 2 (BT2). Dashed lines indicate bounds of the 95% prediction interval.

Tanderup, Beddar, Andersen, Kertzscher, Cygler. In vivo dosimetry in brachytherapy, Med Phys 40(7), 2013

Uncertainties

Example of an uncertainty budget for AI_2O_3 detectors

Andersen et al, Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy, Med Phys, 36 (3), 708-718, 2009

Component	RL (%)	OSL (%)
Basic reproducibility	1.3	1.3
Energy response	2	2
Angular dependence	2	2
Stem effect	6	0
Instrument temperature	1	1
Crystal temperature	1	1
Fiber-cable transmission	1	1
Readout uncertainty	7.0	3.6
Calibration (at 11.2 mm)	3.7	3.7
Combined standard uncertainty	8	5

Impact of positional uncertainties of dosimeter (single source position)

Dose uncertainty related to positional uncertainty of dosimeter

"Classical" *in vivo* dosimetry: measurement of organ dose

Measurement of dose in organs

- Rectal probes
- Bladder probes
- Urethra
- Requires excellent identification and stability of dosimeter

Cygler et al, Radiother Oncol, 80, 2006, 296-301

Fig. 5. Initial pre-plan (\bullet) and measured post-implant (\blacktriangle) dose rates inside the urethra.

Rethink *in vivo* dosimetry: From organ point dose measurement to overall treatment verification

Organ dose measurements not primary objective

- Detector point doses are surrogates for organ dose
- Organ doses are assessed with 3D imaging and DVH reporting
- (Although dose measurements are relevant under conditions of uncertain dose calculation)
- Treatment verification primary objective
 - Monitoring of treatment progression
 - Real-time measurements and instantaneous error detection

What is real-time in vivo dosimetry?

Foot print of source progression!!

Courtesy Gustavo Kertzscher

Dose rate → **geometry**

- Prostate HDR brachytherapy
- Real-time in vivo dosimetry
- Al2O3 luminescent dosimeter placed in additional needle

Jacob Johansen et al, Aarhus University Hospital, 2017

What do we need from our *in vivo* dosimetry system?

Detectors:

- Real-time signal
- Small size (ability to position detectors inside applicators)
- High signal and reproducibility
- As small dependence as possible of:
 - Time (e.g. after-glow)
 - Dose (change in radiosensitivity with dose)
 - Energy
 - Angular
 - Temperature

Software:

- Dose rate analysis
- Error detection

Which detector?

TABLE III. Character advantageous (++), g	pristics of detectors good (+), and inconver	Passive (hytherapy. The items Radioluminescence)	are rated according to: (Plastic scintillator)	(Inorganic scintillator)
	TLD	Diode	MOSFET	Alanine	RL	PSD	ISD
Size	+	+/-	+/++	- <u></u> :	++	++	++
Sensitivity	+	++	+	8 - 5	++	+/++	++
Energy dependence	+			+	3 <u>—</u> 3	++	
Angular dependence	++	(5.1 8	+	+	++	++	++
Dynamic range	++	++	+	—	++	++	+/++
Calibration procedures, QA, stability, robustness, size of system, ease	+	++	++	_	-/+	+/++	-
of operation Commercial availability	.++	++	++	++	-	+	-
Online dosimetry		++	+	- T: :	++	++	++ High sensitivity,
Main advantages	No cables, well studied system	Commercial systems at reasonable price, well studied system	Small size, commercial system at reasonable price	Limited energy dependence, no cables	Small size, high sensitivity	Small size, no angular and energy dependence, sensitivity	Small size, no angular dependence,
Main disadvantages	Tedious procedures for calibration and readout, not online dosimetry	Angular and energy dependence	Limited life of detectors, energy dependence	Not sensitive to low doses, tedious procedures for calibration and readout, not online dosimetry, expensive readout equipment not available in clinics	Needs frequent recalibration, stem effect, not commercially available	Stem effect	Energy dependence

K. Tanderup, S. Beddar, C. E. Andersen, G. Kertzscher, J. E. Cygler, "*In vivo* dosimetry in brachytherapy", Med. Phys. 40(7), 070902 (15 pp.) (2013).

Novel developments inorganic scintillators: Large light yield

Ruby-based

Eu-activated phosphors

G. Kertzscher, S. Beddar, "Inorganic scintillation detectors based on Eu-activated phosphors for 192lr brachytherapy", Phys. Med. Biol. 62 (2017) 5046–5075
G. Kertzscher, S. Beddar, "Ruby-based inorganic scintillation detectors for 192lr brachytherapy", Phys. Med. Biol. 61 (2016) 7744–7764

How to proceed?

French survey (2017): 57% of centers are interested in implementing *in vivo* dosimetry for brachytherapy

Needs for commercial availability of:

- Robust, sensitive and accurate detectors
- Software for dose rate analysis and error detection
- Needs for prospective *in vivo* dosimetry for:
 - Avoidance of errors
 - Assessment of frequency and nature of errors

* Estelle Spasic, Institute Curie, Paris, personal communication

As long as we do not look for errors, we do not see errors

As long as we do not look for errors, we do not see errors

In vivo dosimetry may enable us to see!

