Optimization of Radiotherapy for MRI

Eric Paulson, PhD DABR Radiation Oncology, Radiology, and Biophysics Froedtert and Medical College of Wisconsin Milwaukee, Wisconsin, United States August 1, 2017

Froedtert & MEDICAL

Learning Objectives

- Gain insight into strategies used to overcome the design challenges facing MR-gRT
- Understand how dosimetry changes in the presence of magnetic fields
- Understand how QA procedures and equipment need to be modified for use in MR-gRT
- Appreciate how clinical radiotherapy workflows may change with MR-gRT

Challenges Facing MR-gRT

- Decoupling the magnetic field from RT components:
 Minimizing magnetic interference
- Decoupling the RT components from MRI acquisition:
 _ Minimizing radiofrequency interference
- Beam transmission through the MRI
- Influence of Lorentz force on secondary electrons

Strategies to Minimize Magnetic Interference

- Individual operation of MRI and Linac
- Utilize active shielding to reduce magnetic field over linac components
- Embed linac components in concentric ferromagnetic rings

Strategies to Minimize RF Interference

- Individual operation of MRI and Linac
- Use radionuclides rather than linac as photon source
- Surround linac with materials to shield RF: - Integrate cryostat into Earaday cage
- Integrate cryostat into Faraday cage
 Layers of carbon fiber and copper to reflect and absorb RF

Strategies for Beam Transmission

Perpendicular to B0: - Between split magnet cores - Through cryostat between magnet

- between magnet winding bands
 Between magnet poles
- Parallel to 80:

 Through holes in magnet poles, rotating magnet around patient or patient in magnet

 Choice will affect

attenuation and dosimetry

Learning Objectives

- Gain insight into strategies used to overcome the design challenges facing MR-gRT
- Understand how dosimetry changes in the presence of magnetic fields
- Understand how QA procedures and equipment need to be modified for use in MR-gRT
- Appreciate how clinical radiotherapy workflows may change with MR-gRT

Dosimetry in Magnetic Fields

- Photon beam not affected by magnetic field
- Secondary electrons experience Lorentz force when magnetic and irradiation fields are orthogonal
- Effects:
 - Altered buildup distances
 - Titled dose kernels
 - Electron return effect

Electron Return Effect (ERE)

- Helical electron trajectories result in "re-entrance effects" arise at tissueair interfaces
- Increases exit, interface dose
- ERE Dependence:
- Field strength (B0)
- Irradiation field size
- Entrance, exit surface orientations
- Tissue mass density changes

Characterization of Lorentz Force Effects Image: Strate in the image: Strate in the

Strategies to Manage ERE

Opposed beams

- Including magnetic field in IMRT optimization
- Use gating or re-optimization for non-stationary air cavities
- Orient irradiation parallel to BO: Inline MR-gRT implementations

Dose Calculation Algorithms

- MR-gRT requires optimization in magnetic fields:
 - Surface orientation dependency on ERE Magnetic field strength and direction
 - Cryostat
- Monte Carlo:
 - Implementation dependent (GPUMCD, Hissoiny S, et al, PMB 2011)
 15 seconds to several minutes
- Deterministic:
 - Possible with newer hardware (Aubin J, et al Med Phys, 2015)

Learning Objectives

- Understand how QA procedures and equipment need to be modified for use in MR-gRT

Dose Response in Magnetic Fields

Reference Dosimetry Formalism for MR-gRT

- Must perform in liquid water due to air gap effects
- Careful choice of beam quality specifier and chamber orientation
- Additional correction factors required

 $k_{0\ldots 0}^{l_{\alpha},l_{\alpha}}$

 $D_{w,Q_{max}}^{B,f_{max}} = M_{Q_{max}}^{B,f_{max}} N_{D,w,Q_0} k_{Q_{max}}^{B,f_{max}},$

 $k_{Q_{msr}}^{B,f_{msr}} = k_{Q,Q_0} k_{Q_{msr},Q}^{f_{msr},f_{ref}} k_B^{Q_{msr}},$

Relative Dosimetry for MR-gRT

- Moving chamber during irradiation not affected by magnetic field
- Use of ion chamber as reference for linac output variations does not require correction
- Rotate chamber for in-plane profile measurements

Routine QA Procedure Modifications

- Magnetic field effects require redesign of some existing linac QA tests
- Approaches:
 - Apply correction factors to existing procedures
 - Develop new procedures
- Incorporate high density materials (Copper):
 - Shorter path length of electrons
 - Reduces size of dose kernel
 - Minimizes magnetic field effectsDose is deposited more locally

Adapted Routine QA Procedures

New QA Devices for MR-gRT

Pa

Ma

Arccheck-MR The Ultimate 4D QA Solution - Compatible with MBI, Regiditer[®], VMAT, FFF and TomoTherap - 1386 San/Yaha[®] Tolosia Detectors - Simple to setup and (tightweight (Telig) - True 4D - Correlate angle, does, and time - DWI (COWP) option, and control point analysis

IC PROFILER - MR

The Waterless Water Tank • 251 ionization chamblers for large field measurem • Smm detector spacing, 2.9mm detector width • Low signal to noise ratio (0.15%) • Accuracy is within 0.5% of a water tank

Ferromagnetic components removed; Power supply outside field

Unmet Need: Water Tanks for MR-gRT

•

.

- No commercially available scanning systems for MR-gRT
 Physical dimensions may restrict
- Physical dimensions may restrict phantom size and range of SSDs
- Unable to measure PDD at multiple gantry angles
- Increases commissioning time and uncertainty in measurements

Learning Objectives

- Gain insight into strategies used to overcome the design challenges facing MR-gRT
- Understand how dosimetry changes in the presence of magnetic fields
- Understand how QA procedures and equipment need to be modified for use in MR-gRT
- Appreciate how clinical radiotherapy workflows may change with MR-gRT

Fractional Dose Modulation

With MR-gRT, fractionation schemes may be less important

Increase fractional dose on days with more favorable anatomy

Use real-time imaging to confirm OAR positions are stable throughout treatment

Accumulate BED and terminate treatment when targeted BED achieved

May result in accelerated treatments

Biological Adaptive

- Identify poorly responding regions using quantitative MRI
- Incorporate using adaptive dosepainting
- Degree of dose escalation depends on location, size, and shape of subvolume

Continuously adapt plan based on each anatomy update from MRI
Adaptive Sequencer:

Segment-by-segment optimization based on ideal fluence with direct update to MLCs

Summary

- MR-gRT extends the advantages of MRI into the RT treatment room, facilitating high precision, dose escalated radiotherapy
- Different MR-gRT implementations uniquely address the design challenges of integrating MRI and RT devices
- The presence of the magnetic field can affect dosimetry but it is largely possible to manage these effects
- As technology improves, MR-gRT has the potential of shifting the RT paradigm from a sequential approach to a continuous online adaptive approach in which morphology, biology, and motion changes can be handled on the fly

ICRU Margin Definitions

Pillars of success in RT:

- Accurate delineation of disease extent
 <u>Optimal</u> alignment of the treatment beam to the target
- MR Simulation:
- Consistent, true GTV
 More accurate CTV
- MR-guided RT:
- Reduce inter-, intra-fractional uncertainties
 Biologically adaptive, dose-escalated RT

Adaptive MR-gRT

- Daily (real time) translation, rotation, deformation of targets and/or OAR
- Target volumes change due to treatment response
- Common concerns:
 - Recontouring time
 - Reoptimization time
 How to QA?
- Concerns unique to MRI:
 - Lack of electron density information
 Magnetic field effects

Strategies for Online Adaptive MR-gRT

Seg –	gment Ap Fast Handles	erture Morp deformations	hing (SAM		
	Operation				
	Oper	ation		Correctio	105
	Oper planning CT	on daily CT	Translation	Correctio FFF effect	ns Target deformation
Ō	Oper planning CT VCS	ation On daily CT	Translation ×	Correctio FFF effect	ns Target deformation
On	Oper planning CT VCS VCS	On daily CT	Translation × ×	Correctio FFF effect	Target deformation
On	Oper planning CT VCS VCS WSO	On daily CT	Translation × × ×	Correctio FFF effect	Target deformation

and rotations with aperture shifts

et al Med Phys 2016: 43:49

Transmission through RF Coils

Problem in PET/MR Not issue with MR-Linac due to higher energy photons Attenuating components moved to edges of coils

SNR Degradation: Pulsed radiation-induced currents (implementation dependent?)

Benefits:

Reduced ERE from attenuation of returning electrons in RF coil

Surface Dose Dependence

- Compton scatter from RT hardware and transmission through cryostat
- Transverse magnetic field sweeps away contaminating electrons
- Small reduction in surface dose for perpendicular orientation
- Increase in surface dose for parallel (inline) configuration

In Vivo Dosimetry

• in-vivo dosimetry:

- MOSFETs:
 Resonne increased 5% during MRI-gRT at 0.35T (Knutson et al, Med Phys 2014)
 Recommend using handheld readers
 - TLDs/OSLs:
 Response not affected at 0.35T (Goddu et al, Med Phys, 2012)
- Treatment plans:
 - MRI-compatible ArcCheck (0.35T through 1.5T)
 - Feasible to use polymer gels (Zhang et al, Med Phys, 2014)
- Daily:
 - Ensure RF coils in same position (may be modeled in TPS)

