

UNIVERSITY of WASHINGTON

Intra-operative light-sheet fluorescence microscopy

Adam Glaser

Department of Mechanical Engineering, University of Washington, Seattle, WA

1 mm

Dual-color light-sheet microscopy of a human prostate core-needle biopsy

Motivation: pathology has remained unchanged for a century

Goal: non-destructive, slide-free, 'digital' pathology

AAPM 2017 – Annual Meeting

Advantages

Fast Digital Non-destructive Slide-free Wide-area

Methods: fluorescence microscopy for imaging human tissues

Surface microscopy

Volumetric microscopy

Fluorescence microscopy method

	MUSE	Structured-illumination	Confocal, Multiphoton	Light-sheet
Optical sectioning	UV light	Patterned demodulation	Physical pinhole	Selective plane illumination

MUSE - Levenson, UC Davis, Structured-illumination - Brown, Tulane, Confocal - Rajadhyaksha, MSKCC, Nonlinear, Fujimoto, MIT

Confocal laser scanning microscopy (CLSM)

UNIVERSITY of WASHINGTON

Optical-sectioning

A physical pinhole is used to reject out of focus scattered light.

*Slow due to the need for raster-scanning

Milind Rajadhyaksha, MKSCC (Skin) Abeytunge *et al.*, JBO (2011)

Multiphoton microscopy (MPM)

UNIVERSITY of WASHINGTON

Optical-sectioning

A physical pinhole is used to reject out of focus scattered light.

*Nonlinear process confines fluorescence excitation.

James Fujimoto, MIT (Breast) Tao *et al.*, PNAS (2014)

Structured-illumination microscopy (SIM)

UNIVERSITY of WASHINGTON

Optical-sectioning

Patterned light is demodulated to reject out of focus scattered light.

*Volumetric imaging not possible

PBS LED + ASL SCMOS

Quincy Brown, Tulane (Prostate, kidney) Schlichenmeyer *et al.*, Biom. Opt. Exp. (2014)

Microscopy with UV surface excitation (MUSE)

UNIVERSITY of WASHINGTON

Deep UV excitation light (<300 nm) is rapidly attenuated.

*Volumetric imaging not possible

Richard Levenson, UC Davis (unpublished)

Light-sheet microscopy (LSM)

UNIVERSITY of WASHINGTON

Optical-sectioning

Selective plane of illumination.

*Decouples illumination and collection paths

Light-sheet microscopy of human prostate tissue Radical prostatectomy Before surface Prostate slices extraction (3-5 mm thick) Excised prostate 1 cm Fresh prostate slice After surface 2 mm extraction

Jonathan Liu, University of Washington (Prostate, breast) Glaser *et al.*, Nature Biom. Eng. (2017)

1 cm

UNIVERSITY of WASHINGTON

Long depth of focus enables rapid 3D imaging

Conventional microscopy

Light-sheet microscopy

Experimental image of human prostate tissue

W

Challenge: light-sheet microscopy is not suited for human tissue

UNIVERSITY of WASHINGTON

Challenge

Designed for imaging smaller transparent samples. Human tissues are large + highly scattering.

Intraoperative histlogy: Lightning 3D histopathology, Nature Biomed. Eng. (2017)

Solution: "open-top" light-sheet microscopy

UNIVERSITY of WASHINGTON

Solution

Place all optics underneath the scanning plane, opposite the sample being imaged

Intraoperative histlogy: Lightning 3D histopathology, Nature Biomed. Eng. (2017)

Pathology-optimized light-sheet microscope

UNIVERSITY of WASHINGTON

Characterization of illumination light sheet

UNIVERSITY of WASHINGTON

UNIVERSITY of WASHINGTON

Lateral resolution from USAF target

Axial resolution

Group 9 element 1 ~ 1.5 μ m resolution

^{*}H&E tissue section is 5 µm

Open-top light-sheet microscope demonstration

UNIVERSITY of WASHINGTON

Imaging of a fresh piece of human prostate tissue

UNIVERSITY of WASHINGTON

Glaser et al., Nature Biomed. Eng. (2017)

Fresh prostate slice

1 cm

AAPM 2017 – Annual Meeting

Acridine Orange

Imaging of a fresh piece of human prostate tissue

UNIVERSITY of WASHINGTON

Light-sheet microscopy of prostate tissue

Tilt, ~2 μ m/mm (slope = 0.2%)

Normal prostate glands

Prostate adenocarcinoma

Comparison study for N = 25 fresh human prostate samples

UNIVERSITY of WASHINGTON

Light-sheet microscopy Histology 2 92% sensitivity 92% specificity 12 11 \$ 10 10 16-14 13 13 20 21 21 20 17 23 24 25 23 22

1 cm

Imaging of a fresh piece of human breast tissue

UNIVERSITY of WASHINGTON

Fresh breast tissue

5 mm

H&E

5 mm

Glaser et al., Nature Biomed. Eng. (2017)

AAPM 2017 – Annual Meeting

🖂 akglaser@uw.edu

Imaging of a fresh piece of human breast tissue

UNIVERSITY of WASHINGTON

Invasive ductal carcinoma with adjacent normal breast tissue

Adipose tissue

Benign breast lobules

Dual-color imaging of PpIX in a human brain tumor

UNIVERSITY of WASHINGTON

False-colored H&E imaging using light-sheet microscopy

UNIVERSITY of WASHINGTON

DRAQ5 and Eosin dual-channel fluorescent staining and imaging of a human prostate biopsy

Elfer et al., PLoS One, (2016), Giacomelli et al., PLoS One, (2016)

Dual-color 3D imaging of a human prostate core-needle biopsy

Dual-color 3D imaging of a human prostate core-needle biopsy

UNIVERSITY of WASHINGTON

Clearing and staining time: <1 hour in 60% TDE Imaging time: ~10 min **Tissue size**: ~0.1x0.1x2.2 cm Resolution: 1.25 µm/pixel

Stains DRAQ5 (nuclear) **Eosin** (cytoplasmic)

Overview of clinical applications at the University of Washington

UNIVERSITY of WASHINGTON

Real-time intraoperative guidance

• Breast, prostate, brain, skin ...

10 mm

3D pathology of biopsies

• Prostate, breast, kidney, lung, bone ...

Future directions at the University of Washington

UNIVERSITY of WASHINGTON

Summary of intra-operative fluorescence microscopy

UNIVERSITY of WASHINGTON

Surface microscopy

Volumetric microscopy

Fluorescence microscopy method

	MUSE	Structured-illumination	Confocal, Multiphoton	Light-sheet
Optical sectioning	UV light	Patterned demodulation	Physical pinhole	Selective plane illumination

MUSE - Levenson, UC Davis, Structured-illumination - Brown, Tulane, Confocal - Rajadhyaksha, MSKCC, Nonlinear, Fujimoto, MIT

Acknowledgements

UNIVERSITY of WASHINGTON

UW Seattle

Nick Reder, M.D. Ye Chen, M.S. Soyoung Kang, M.S. Peter Wei Chengbo Yin Jeffrey Chia Yu "Winston" Wang, Ph.D. Jonathan Liu, Ph.D.

UW Pathology

Lawrence True, M.D. Erin McCarty

NIH / NCI – F32 CA213615 (Glaser) NIH / NIDCR – R01 DE023497 (Liu) NIH / NCI – R01 CA175391 (Liu and Sanai) NIH / NIBIB – R21 EB015016 (Liu) UW Royalty Research Fund (Liu and True) ITHS Collaboration Innovation Award (Dintzis and Liu) CoMotion Innovation Fund (Reder, Glaser, True, and Liu)