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New	Ideas Investigation Clinical	
Practice
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Investigating	a	novel	detector	using	
ROC	Analysis

• Show	how	ROC	analysis	used	as	scientific	tool	to	
study	new	detectors

• Example	of	work	with	large	area	parallel	plate	ion	
chamber

• Discussion	of	how	this	can	be	generalized	to	
other	research



Evaluating	Clinical	Tools
• ROC	Curves
– Looks	at	how	well	a	tool	classifies	both	positives	and	
negatives
• Often,	evaluations	focus	on	catching	errors	without	
evaluating	the	false	alarm	rate

– Flexibly	compare	multiple	tools	regardless	of	their	
metric
• Just	need	to	link	to	a	binary	output

– Can	quantitatively define	a	threshold	for	clinical	use
• Rather	than	using	a	“rule-of-thumb”	approach
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What	is	the	IQM	(Integrated	Quality	
Monitor)?

• Purpose:	
– to	perform	real-time	

verification	of	treatment	
delivery

• Large	area	ion	chamber	
with	angled	plates
– Spatially	dependent	gradient	

along	direction	of	MLC	travel
– Nearly	unique	signal	from	

different	collimation/fluence
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• Slides	into	head	of	linac
• Gives	integrated	counts	
as	a	function	of	control	
point

• Compares	these	
integrated	counts	to	a	
baseline	measurement	
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What	is	the	IQM	(Integrated	Quality	
Monitor)?



Using	the	IQM	
• Computer	in	control	room	where	therapists	can	monitor	the	

IQM	signal
• If	IQM	signal	is	more	than	tolerance	value	(in	terms	of	

±percent	difference	from	baseline),	alarm	will	sound
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Example	screenshot	of	IQM	Monitor	software	showing	IQM	counts	as	a	
function	of	control	point
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Some	aspects	of	this	device
• It	is	monitoring	for	a	failure
– Needs	specific	cutoff	values

• It	is	checking	for	a	(hopefully)	rare	situation
– Needs	to	be	evaluated	in	a	way	which	is	robust	to	
skew	in	the	data

– Potentially	more	passing	cases	than	failing	cases	



Dealing	with	Skew
• Rare	errors
• ROC	curves	are	insensitive	to	changes	in	class	
distribution
– OK	to	have	more	passing	cases	than	failing	cases	
in	your	experiment

– ROC	is	plot	of	true	positive	vs	false	positive



Assessing	the	Sensitivity	and	
Specificity:	Managing	Alarm	Fatigue

• Previous	publications	have	investigated	the	IQM’s	sensitivity	to	MLC	positioning	
errors,	wrong	energy,	and	wrong	number	of	MUs
– Islam	et	al	(2009)

• In	practice,	need	something	that	shows	both	good	sensitivity	and	good	specificity
– Too	many	false	alarms	lead	to	Alarm	Fatigue
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Assessing	the	Sensitivity	and	
Specificity

• To	assess	sensitivity	and	specificity,	used	ROC
– Response:	percent	difference	from	baseline	of	IQM	integrated	count	per	

control	point
– Binary	variable:	does	the	delivery	have	an	error	or	not?

• Need	to	know	which	plans	truly	have	an	error
– Gold	standard
– Generate	error	plans
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Assessing	the	Sensitivity	and	Specificity

• To	create	error	plans,	used	method	of	
Steers	et	al	2016
– Randomly	perturb	all	in-field	MLC	positions	by	a	

distribution	of	errors	ranging	from	±1mm	to	
±5mm

– For	example,	for	the	±1mm	error	plan,	the	
distribution	of	MLC	errors	per	field	will	range	
from	+1mm	to	-1mm	
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• Used	5	original	patient	plans	(3	brains,	1	liver,	1	lung)
• Created	5	additional	MLC	error	plans	per	patient	plan
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Assessing	the	
Sensitivity	and	
Specificity

• For	the	analysis	
we	used	
maximum	
magnitude	of	the	
percent	difference	
per	control	point	
group

• Due	to	distributed	
nature	of	MLC	
errors	and	
relevance	to	clinic
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Distribution	of	percent	differences	&	ROCs	for	good	and	
less	good	plans

15

All	of	the	MLC	Error	Levels	(1mm	to	5mm)	
were	significantly	different	from	their	
respective	No-Error	plans



Distribution	of	percent	differences	&	ROCs	for	good	and	
less	good	plans
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All	ROC	curves	showed	good	
sensitivity	and	False	Positive	Rate	
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• AUC:	Area	under	the	
ROC	curve

• Gives	an	overall	
score	for	the	
classifier’s	sensitivity	
and	specificity
• Loses	some	

information



Optimal	Tolerances
• Recall	how	the	IQM	data	is	given	to	the	user…
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If	the	measurement’s	percent	
difference	from	baseline	is	
greater	than	this	à Alarm



Optimal	Tolerances

MLC	Error		
(mm)

Liver	Plan	Optimal	
Cutoff	(%	from	

baseline)

Brain	Plan1	Optimal	
Cutoff	(%	from	

baseline)

Brain	Plan2	Optimal	
Cutoff	(%	from	

baseline)

Brain	Plan3	Optimal	
Cutoff	(%	from	

baseline)

Lung	Plan	Optimal	
Cutoff	(%	from	

baseline)

1 2.6 10.8 11.0 23.3 22.0
2 2.0 10.8 22.9 21.1
3 3.5 17.4 11.5 20.8 16.3
4 6.9 12.1 21.8 21.9
5 6.8 14.7 12.4 21.6 16.4
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Can	find	optimal	tolerances	from	ROC	curves,	however	
due	to	inter-plan	variation,	more	data	needed	to	
determine	them



Conclusions	of	Study
• IQM	was	able	to	tell	the	difference	between	plans	with	and	

without	MLC	errors	(sensitivity	and specificity)
• More	work	is	needed	to	understand	IQM	response	to	

different	plan	types	in	order	to	pick	Optimal	Tolerance	
values
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Final	Remarks
• ROC	curves	can	be	used	to	evaluate	the	
sensitivity	and	specificity	of	emerging	tools	
before	becoming	clinical

• They	can	be	used	to	guide	decisions	on	picking	
a	relevant	threshold

• They	are	flexible	(only	need	binary	outcome)
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Different	
abilities	to	
classify	plans:	
possibly	
related	to	
total	MU	
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