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Structure Segmentation For RTP

• A prerequisite for radiotherapy treatment
planning

• Manual Segmentation
- Tedious and time-consuming

- Suffers from large inter- and intra- rater
variability

• Automatic Segmentation Methods
- Atlas-based methods have been popular

- Deep learning (DL) methods very likely be
the method of choice for future
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Deep Convolutional Neural Networks (DCNN)

• Take advantage of spatial structures of image data
- Local receptive fields

- Shared weights

- Multi-scale, hierarchical feature learning

– well suited for image related problems
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[LeCun’1998, Hinton’2006]
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Encoder-Decoder DCNNs

• FCN (2015, Long et al, Univ. of California, Berkeley)

• DeconvNet (2015, Noh et al, POSTECH, Korea)

• U-Net (2015, Ronneberger et al, Univ. of Freiburg)

• SegNet (2015, Badrinarayanan et al, Univ. of Cambridge)

– for semantic image segmentation (pixel-by-pixel labeling)

[Badrinarayanan’2015]
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DCNN Architecture For Thoracic Image Segmentation

• A modified U-Net, added with residue connections from ResNet

27 Convolutional Layers
34.9 Million Parameters

Residue-UNet

[He’2015]
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A Two-Model Scheme

• A 2.5D model for large structures – the lungs
- Input is 5 adjacent axial slices of size 360x360, output is 2D segmentation

map corresponding to the center slice

- Fast, but accuracy limited for thin, elongated structures – e.g. esophagus

• A 3D model for small structures – heart, esophagus, spinal cord
- Input is a 128x128x32 sub-volume, output is 3D segmentation map of

same size

- Very slow if applied to process a whole 3D volume

• The 2.5D model is first applied, the result is used to automatically
define a smaller ROI, within which the 3D model is applied

for better computation efficiency
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DCNN Workflow
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Some Implementation Details

• Models implemented using Caffe package, trained using
stochastic gradient descent with momentum algorithm

• Data augmentation very important during training when
training data are limited
- Apply random deformations to each training sample (image and label

map) on the fly

• Hardware: PC with a NVIDIA Titan X GPU with 12GB memory

• Training a model from scratch takes about 3 days

• Applying the two trained models to process a new 3D image
takes ~30 seconds each
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Cross Validation Using AAPM Challenge Data

• 36 patients, 12 from each of three institutions
- Randomly select 3 subjects from each institution as test data

- Using the remaining 27 (9x3) as training data for DCNN model
training

- DCNN results on 9 test subjects are compared with ground truth
(manual) segmentation

Comparison is also made with respect to an ABAS method
we previously developed
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Comparing Method – Atlas-based Auto-segmentation

• Multi-atlas atlas-based
auto-segmentation
using online RF
(Random Forest)
enhanced label fusion

• Using the 9 training
subjects as atlases for
the 3 test subjects
from the same
institution

[Han’MLMI2013]
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Auto-segmentation using the DCNN method
A sample result

Color: DCNN result
White: manual segmentation
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Comparison – DCNN vs ABAS

• DCNN more
accurate for
most structures

• DCNN only
takes ~1m,
atlas-based
takes ~6
minutes
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Discussion
Advantages of Deep Learning

• DCNN method produces fast and accurate auto-
segmentation results even with limited training data

• Accuracy should improve further with more training data
• DL greatly benefits from big data due to high model capacity

• DCNN can easily accommodate large amount of training
data
• Only training time may increase, applying the model takes the

same time

• Computation time for ABAS increases with number of atlases
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Introduction: Deep Learning

• Deep learning models have shown their superiority 
in classification, object detection and (medical) 
image segmentation

• Models:
• Patch-based CNN model: predicts the class label of the center pixel
• U-Net: fully convolutional networks trained end-to-end [1, 2]

• Data:
• The more, the better
• Key: how well can the training data represent the task distribution?

2[1] Ronneberger et al., arXiv:1505.04597 (2015)
[2] Cicek et al., arXiv:1606.06650 (2016)



Methods: General Model

• U-Net is a better suited model
• Efficiency
• Captures information of intensity,

position, shape, etc.

• 3D vs. 2D (?)
• Pros:

• Additional input information (slice)

• Consistent output

• Cons:
• Less training data

• Memory (hard to fit 200 * 512 * 512 into GPU)

• We choose 3D U-Net and deal with the challenges
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Methods: Image Pre-processing

• Why? If more data is difficult, it’s better to limit the 
variability in the dataset

• Steps:
• Intensity normalization (crop to -1000~600 in Hounsfield scale)
• Unify the pixel spacing and slice thickness (resizing)
• Crop the images to the same in-plane dimension (#slice * 512 * 512)
• Generate masks with ROI labels (0-Background, 1-SpinalCord, 2-

Lung_R, 3-Lung_L, 4-Heart, 5-Esophagus
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Methods: U-Net with Cropped Images

• Challenges:
• GPU Memory (Titan X: 12 GB) limits the size of input images
• Due to small data set, U-Net model does not perform good when trained 

end-to-end (full image -> all ROI labels)

• Solution: crop the input images to separate regions 
containing one ROI each (organs don’t overlap!)
• Step 1: train a U-Net model on scaled images for end-to-end 

segmentation and extract the bounding boxes for each ROI
• Step 2: train one U-Net model for each ROI with cropped images and 

combine the results (including resolve of conflicts)
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Methods: Step 1

• Objective: extract bounding boxes for each ROI

• Network structure:
• Input: scale to 72x256x256, then crop to 72x208x208 (uniform slice 

thickness is broken)
• Encoding path: 72x208x208x24 -> 36x104x104x48 -> 18x52x52x96
• Decoding path: 18x52x52x96 -> 36x104x104x48 -> 72x208x208x24
• Loss: weighted cross entropy (background: 1.0, SpinalCord: 2.0, 

Lung_R: 1.0, Lung_L: 1.0, Espophagus: 3.0)

• Data augmentation
• Random 3D translation, rotation, scaling is applied on the fly
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Methods: Step 1 - Continued

• Training
• 200 epochs (8 hours on Titan X)

• Post-processing (bounding boxes extraction):
• Clean the contour by removing isolated regions (keep only one 

connected region for each ROI)
• Transform to original shape via padding and scaling
• Calculate the range for each ROI and extraction cropped images with 

slightly enlarged bounding boxes
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Methods: Step 2

• Objective: get the label maps for each ROI

• Network structure:
• Input: fixed size for each ROI estimated from the mean sizes (uniform 

slice thickness and pixel spacing are broken)
• Wider than step 1 model (48 filters in the first layer)
• Output: foreground (ROI) and background
• Loss: weighted cross-entropy for SpinalCord and Esophagus

• Data augmentation:
• Random 3D rotation and shear, variations of bounding boxes
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Methods: Step 2 - Continued

• Training
• 200 epochs (7-10 hours on Titan X depending on the input size)

• Post-processing:
• Clean the contour by removing isolated regions (keep only one 

connected region for each ROI)
• Transform to original shape via padding and scaling
• If conflicts exist (e.g. multiple models predict foreground for the same 

voxel), choose the result with the highest probability from softmax
output
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Results: Training
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Step 1: Mean
Step 2: SpinalCord
Step 2: Lung_R
Step 2: Lung_L
Step 2: Heart
Step 2: Esophagus



Results: Validation (Splitted Training)
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Step 1: Mean
Step 2: SpinalCord
Step 2: Lung_R
Step 2: Lung_L
Step 2: Heart
Step 2: EsophagusStep 1 Mean Dice: 0.84

Step 2 Mean Dice: 0.88



Results: Validation

12

SpinalCord Lung_R Lung_L Heart Esophagus

Dice 0.91 0.97 0.97 0.89 0.75

Hausdorff
Distance 1.73 4.83 3.29 13.40 11.45

Average
Distance 0.59 1.05 0.82 4.11 3.58



Discussion and Conclusion

• U-Net structure fits this task well

• Intensity normalization is important

• The easier the task, the better the performance (label 
all ROIs from all images vs. separate foreground and 
background from cropped images)

• More work needs to be done for Esophagus (e.g. post 
processing using shape constraint)
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Devil is in the Detail

Source code:
https://github.com/xf4j/aapm_thoracic_challenge

14
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Methodology - Atlas alignment 

Coarse-to-fine strategy 
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1º Global affine registration 

2º Local affine registration 

+ Dense deformation field reconstruction 

3º Deformable registration 

Methodology - Atlas alignment 

Example, coronal slice from one atlas  



Methodology - Label Fusion 

Statistical selection Local weight voting 

Label fusion 
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Challenge score: 46.4 

Results 

AD DICE HD 

Esophagus 0.64 7.6 2.4 

Lung_L 0.96 1.7 0.90 

Lung_R 0.97 5.9 1.3 

Heart 0.90 10.8 3.3 

Spinal Cord 0.91 1.8 0.60 

Questions: brunooliveira@med.uminho.p 

mailto:brunooliveira@med.uminho.pt
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Deus ex machina 

- an unexpected power or event saving a seemingly hopeless situation 
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A story about auto-contouring 

• Basic segmentation methods 

 

• Prior-knowledge segmentation 

– ASM 

– Atlas 

 

Sharp, Gregory, et al. "Vision 20/20: Perspectives on automated image segmentation 
for radiotherapy." Medical physics 41.5 (2014). 
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Atlas based auto-contouring 
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Extreme Value Theory  

What’s achievable with atlas-based auto-contouring 

H&N results presented at ICCR 2016 

Single atlas Multi atlas 

DSC HD* AD DSC HD* AD 

Esophagus 0.81 7.0 1.19 0.87 4.9 0.8 

Heart 0.94 10.8 1.72 0.96 7.8 1.3 

Lung_L 0.99 10.8 0.45 1.0 10.3 0.4 

Lung_R 0.99 11.2 0.47 1.0 8.4 0.3 

SpinalCord 0.93 3.6 0.50 0.95 3.0 0.4 

* Calculated differently to the challenge 
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The problem 

…assuming perfect atlas selection by an 

oracle with fore-knowledge of the output 

performance 

Estimates the potential performance for a very large atlas database… 
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Atlas selection doesn’t work so well in practice 

H&N results presented at AAPM 2016 
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Circumscriptio ex machina 

Deep Learning 
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Deep learning 

• “Architecture” 

• Initialisation 

• Epochs and Iterations 

• Momentum 

• Jittering 

 

• DATA – Lots of data! 

– Pre-trained on 450 cases 

– Refined on training set 
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Comparing results 

DSC HD AD DSC HD AD 

Esophagus 0.56 10.2 3.0 0.76 5.9 1.8 

Heart 0.89 11.6 3.9 0.90 10.8 3.6 

Lung_L 0.94 6.9 1.7 0.97 2.8 0.71 

Lung_R 0.96 6.3 1.3 0.97 4.2 0.91 

SpinalCord 0.88 2.2 0.75 0.91 1.6 0.58 

Challenge 
score 

39.5 54.2 
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An example from the test data 
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Difficulties with the challenge 

• Limited data 

 

• Institutional variation 

 

• Quantitative scoring 
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Can you tell the difference from a clinician? 

www.auto-contouring.com 
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