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Structure Segmentation For RTP

e A prerequisite for radiotherapy treatment
planning

 Manual Segmentation
- Tedious and time-consuming
- Suffers from large inter- and intra- rater
variability
e Automatic Segmentation Methods
- Atlas-based methods have been popular

- Deep learning (DL) methods very likely be
the method of choice for future
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Deep Convolutional Neural Networks (DCNN)

— well suited for image related problems [LeCun’1998, Hinton’2006]

e Take advantage of spatial structures of image data
- Local receptive fields
- Shared weights
- Multi-scale, hierarchical feature learning

feature maps

input image feature maps prediction
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Encoder-Decoder DCNNs

— for semantic image segmentation (pixel-by-pixel labeling)

Convolutional Encoder-Decoder Output

Pooling Indice:

RGB Image M Conv + Batch Normalis t n + Rell Segmentation
-Pool ng I Upsamplin Softmax

[Badrinarayanan’2015]
 FCN (2015, Long et al, Univ. of California, Berkeley)
 DeconvNet (2015, Noh et al, POSTECH, Korea)
 U-Net (2015, Ronneberger et al, Univ. of Freiburg)

* SegNet (2015, Badrinarayanan et al, Univ. of Cambridge)
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DCNN Architecture For Thoracic Image Segmentation

A modified U-Net, added with residue connections from ResNet [He2015]
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A Two-Model Scheme

for better computation efficiency

e A 2.5D model for large structures — the lungs

- Input is 5 adjacent axial slices of size 360x360, output is 2D segmentation
map corresponding to the center slice

- Fast, but accuracy limited for thin, elongated structures — e.g. esophagus

* A 3D model for small structures — heart, esophagus, spinal cord

- Input is a 128x128x32 sub-volume, output is 3D segmentation map of
same size

- Very slow if applied to process a whole 3D volume

 The 2.5D model is first applied, the result is used to automatically
define a smaller ROI, within which the 3D model is applied
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DCNN Workflow

e Two stages e Training data

Image Data
Expected
Results

Prediction Results

New Image L(O) = —
Data

2| =

N 5
DD wivtlogPe (0)
i=1 c=0

cross-entropy loss

0 = {Wy, by, W5, by, }
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Some Implementation Detalls

* Models implemented using Caffe package, trained using
stochastic gradient descent with momentum algorithm

o Data augmentation very important during training when
training data are limited

- Apply random deformations to each training sample (image and label
map) on the fly

« Hardware: PC with a NVIDIA Titan X GPU with 12GB memory
e Training a model from scratch takes about 3 days

» Applying the two trained models to process a new 3D image
takes ~30 seconds each
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Cross Validation Using AAPM Challenge Data

« 36 patients, 12 from each of three institutions
- Randomly select 3 subjects from each institution as test data
- Using the remaining 27 (9x3) as training data for DCNN model
training
- DCNN results on 9 test subjects are compared with ground truth
(manual) segmentation

Comparison is also made with respect to an ABAS method
we previously developed
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Comparing Method — Atlas-based Auto-segmentation
[Han’MLMI2013]

e Multi-atlas atlas-based | s || s

auto-segmentation I
using online RF o I
(Random Forest) ! I
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enhanced label fusion | st | | s ...
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Train Voxel
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Auto-segmentation using the DCNN method
A sample result

Color: DCNN result
White: manual segmentation
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Comparison — DCNN vs ABAS

1.1

I I I I -ABAS
1 mmoew) o DCNN more

accurate for
most structures

« DCNN only
takes ~1m,
atlas-based
takes ~6
minutes
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Discussion
Advantages of Deep Learning

« DCNN method produces fast and accurate auto-
segmentation results even with limited training data

« Accuracy should improve further with more training data
» DL greatly benefits from big data due to high model capacity

« DCNN can easily accommodate large amount of training
data

* Only training time may increase, applying the model takes the
same time

o Computation time for ABAS increases with number of atlases
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A 3D U-Net based thoracic segmentation
framework using cropped images
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Introduction: Deep Learning

* Deep learning models have shown their superiority
in classification, object detection and (medical)
Image segmentation

* Models:
» Patch-based CNN model: predicts the class label of the center pixel

« U-Net: fully convolutional networks trained end-to-end (1.2

e Data:

* The more, the better

* Key: how well can the training data represent the task distribution?

P [1] Ronneberger et al., arXiv:1505.04597 (2015) 5
il UNIVERSITYof VIRGINIA [2] Cicek et al., arXiv:1606.06650 (2016)
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Methods: General Model

« [U-Net 1s a better suited model

1 i inapLg output )
b EfﬁCICncy tile 'ErE i:e;;‘;nentanon
 Captures information of intensity, Al I

position, shape, etc. o o
¥ 256 o i
* 3D VS. 2D (?) bt *f: ..r‘ > -»t =»conv 3x3, ReLU
.; 512 w1 o 177 copy and crop
 Pros: P v bopem 2
1 f K = conv 1x1

* Additional input information (slice)
* Consistent output

* Cons:
* Less training data

* Memory (hard to fit 200 * 512 * 512 into GPU)

* We choose 3D U-Net and deal with the challenges
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Methods: Image Pre-processing

« Why? If more data is difficult, it’s better to limit the
variability in the dataset

e Steps:
 Intensity normalization (crop to -1000~600 in Hounsfield scale)
» Unify the pixel spacing and slice thickness (resizing)
» Crop the images to the same in-plane dimension (#slice * 512 * 512)

* Generate masks with ROI labels (0-Background, 1-SpinalCord, 2-
Lung R, 3-Lung L, 4-Heart, 5-Esophagus
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Methods: U-Net with Cropped Images

e Challenges:
* GPU Memory (Titan X: 12 GB) limits the size of input images

* Due to small data set, U-Net model does not perform good when trained
end-to-end (full image -> all ROI labels)

* Solution: crop the input images to separate regions
containing one ROI each (organs don’t overlap!)

« Step 1: train a U-Net model on scaled images for end-to-end
segmentation and extract the bounding boxes for each ROI

» Step 2: train one U-Net model for each ROI with cropped images and
combine the results (including resolve of conflicts)
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Methods: Step 1

* Objective: extract bounding boxes for each ROI

 Network structure:

» Input: scale to 72x256x256, then crop to 72x208x208 (uniform slice
thickness is broken)

* Encoding path: 72x208x208x24 -> 36x104x104x48 -> 18x52x52x96
* Decoding path: 18x52x52x96 -> 36x104x104x48 -> 72x208x208x24

» Loss: weighted cross entropy (background: 1.0, SpinalCord: 2.0,
Lung R: 1.0, Lung L: 1.0, Espophagus: 3.0)

* Data augmentation

* Random 3D translation, rotation, scaling is applied on the fly
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Methods: Step 1 - Continued

* Training
» 200 epochs (8 hours on Titan X)

* Post-processing (bounding boxes extraction):

» Clean the contour by removing isolated regions (keep only one
connected region for each ROI)

» Transform to original shape via padding and scaling

» (Calculate the range for each ROI and extraction cropped images with
slightly enlarged bounding boxes
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Methods: Step 2

* Objective: get the label maps for each ROI

 Network structure:

» Input: fixed size for each ROI estimated from the mean sizes (uniform
slice thickness and pixel spacing are broken)

» Wider than step 1 model (48 filters in the first layer)
* Output: foreground (ROI) and background
» Loss: weighted cross-entropy for SpinalCord and Esophagus

* Data augmentation:

» Random 3D rotation and shear, variations of bounding boxes
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Methods: Step 2 - Continued

* Training
* 200 epochs (7-10 hours on Titan X depending on the input size)

* Post-processing:
» Clean the contour by removing isolated regions (keep only one
connected region for each ROI)

» Transform to original shape via padding and scaling

» If conflicts exist (e.g. multiple models predict foreground for the same
voxel), choose the result with the highest probability from softmax
output
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Results: Training

dice
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Results: Validation (Splitted Training)

dice
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Results: Validation

Dice 0.97 0.97 0.75

Hausdorft 1.73 4.83 3.9 13.40 11.45
Distance
Average

. 0.59 1.05 0.82 411 3.58
Distance
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e
Discussion and Conclusion

« U-Net structure fits this task well

 Intensity normalization 1s important

« The easier the task, the better the performance (label
all ROIs from all images vs. separate foreground and

background from cropped images)

* More work needs to be done for Esophagus (e.g. post
processing using shape constraint)

- 13
il UNIVERSITYof VIRGINIA
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Devil is in the Detail

Source code:
https://github.com/xf4j/aapm thoracic challenge

Thanks

P 14
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Methodology - Atlas alignment

Coarse-to-fine strategy

Atlas alignment

. _ Dense deformation field : .
Non-deformable registration reconstruction Deformable registration

Global Affine Local Afine




Methodology - Atlas alignment

Example, coronal slice from one atlas

2° Local affine registration
+ Dense deformation field reconstruction

1° Global affine registration 3° Deformable registration



Methodology - Label Fusion

Label fusion

Statistical selection Local weight voting




Results

AD
Esophagus 0.64 7.6 2.4
 Lung L 06 . 17 i 0.90 |
"""""""" Lung R . o097 . 59 i3
""""""""" Heat . 09 . 108 . 33
. SpinalCord | o1 | 18 . 060 |

Challenge score: 46.4

Questions: brunooliveira@med.uminho.p
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Circumscriptio ex machina
A step-change for auto-contouring
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Deus ex machina

- an unexpected power or event saving a seemingly hopeless situation
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A story about auto-contouring

* Basic segmentation methods

* Prior-knowledge segmentation
— ASM

— Atlas

Sharp, Gregory, et al. "Vision 20/20: Perspectives on automated image segmentation
for radiotherapy." Medical physics 41.5 (2014).
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Atlas based auto-contouring
Single-atlas Multi-atlas Selection of Selection of
auto-contouring auto-contouring single atlas multiple atlases
DIR,
contour contour
contour contour
warping ﬁ warping ﬁ
Contour Contour
Y consensus v Y consensus *

Patient image Patient image Qtient image Patient imab
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What'’s achievable with atlas-based auto-contouring

s N ePRERRLC - SRR
Single atlas Multi atlas

DSC

Esophagus 0.81 7.0 1.19 0.87 4.9 0.8

0.94 10.8 1.72 0.96 7.8 1.3
Lung_L 0.99 10.8 0.45 1.0 10.3 0.4
Lung_R 0.99 11.2 0.47 1.0 8.4 0.3

SpinalCord 0.93 3.6 0.50 0.95 3.0 0.4

* Calculated differently to th%f@é”‘?@%lue Theory H&N results presented at ICCR 2016

©Copyright Mirada Medical 2017
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The problem

Estimates the potential performance for a very large atlas database...

...assuming perfect atlas selection by an

oracle with fore-knowledge of the output

performance

©Copyright Mirada Medical 2017
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Atlas selection doesn’t work so well in practice

[ Oracie I Otine | Rancor [N Gest, NN S, NN ==, TN orst, [N Worst, [N Vors,

o o o
N 0O © =~

o
o

Normalised average rank
© o o o
N w £ (6]

o
—

(@)

H&N results presented at AAPM 2016
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Deep learning
THIS 1S YOUR MACHINE LEARNING SYSTEM?

A ” YUP! YOU POUR THE DATA INTO THIS BIG
* “Architecture PILE OF INEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIJERS ARE LJRONG? )

* Epochs and lterations JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

* |nitialisation

* Momentum

* Jittering

° DATA — Lots of data!

— Pre-trained on 450 cases

— Refined on training set

©Copyright Mirada Medical 2017



Comparing results

Atlas contouring
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Deep learning

Esophagus

Lung_L
Lung_R

SpinalCord

Challenge
score

0.56 10.2 3.0
0.89 11.6 3.9
0.94 6.9 1.7
0.96 6.3 1.3
0.88 2.2 0.75

0.76
0.90
0.97
0.97
0.91

5.9
10.8
2.8
4.2
1.6

1.8
3.6
0.71
0.91
0.58
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An example from the test data
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Difficulties with the challenge

* Limited data

* |Institutional variation

* Quantitative scoring

©Copyright Mirada Medical 2017
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Can you tell the difference from a clinician?

www.auto-contouring.com © 2014 Mirada Medical

Mirada Medical USA, Inc.
999 18th Street Suite 2025N Denver, CO 80202
enquiries@mirada-medical.com | 877.872.2617
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