Deep Learning and Applications in Medical Imaging

Berkman Sahiner, PhD	US FDA
Lubomir Hadjiiski, PhD	Univ. of Michigan
Maryellen L. Giger, PhD	Univ. of Chicago
Ronald M. Summers, MD, PhD	NIH Clinical Center

FDA U.S. FOOD & DRUG

Deep learning: Principles, achievements and future potential in medical imaging

Berkman Sahiner, PhD Division of Imaging, Diagnostics and Software Reliability FDA/CDRH/OSEL

3

What is Deep Learning?

- · A sub-field within machine learning
- Learning multiple levels of representation in order to model complex relationships among data
- Higher-level concepts defined in terms of lower-level ones, the hierarchy of such features is called a deep architecture
- The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones
- Typically implemented using artificial neural networks (ANNs)

What has deep learning achieved so far?

Record-breaking performance in

- Speech recognition
- Image recognition
- Natural language processing
- Recommendation systems

FDA U.S. FOOD & DRUG

Example: Image Recognition

• ImageNet Challenge:

- A benchmark in object category classification and detection
- ImageNet classification task
 - 1000 categories
 - Training: 1.28M images with ground truth
 - Test: 100k images, predict 5 (out of 1000) classes
 - Correct if at least one of the predictions is the ground truth.

Deep Neural Networks

- The best-performing methods in ImageNet Challenge, as well as many other tasks have been deep artificial neural networks (ANNs)
- The best-performing deep ANNs in imaging tasks have been a special type of ANNs called deep convolutional neural networks (CNNs)

FDA U.S. FOOD & DRUG

Perceptrons were first described in 1960's

Used for classification

because they cannot form non-linear combination of inputs

Supervised Artificial Neural Networks

Forward propagation		Predicted			
Training data with truth label	ANN with network weights w _{final} (i)	True label	Error (Loss		
func.)					
Network Training Mith backpropagation algorithm					
Network Use Forward propagation only					
	Trained ANN with	Predict	ed label		
Test Data 🔫	 network weights w_{final}(i) 		\rightarrow		

 For many problems, a large training data set size (compared to the number of weights to train) is needed for proper training

-		
DA	U.S. FOOD & DRUG	
	ADMINISTRATION	

13

Deep Learning in Imaging Applications, Naive Approach

liss???

15

Deep Learning Approach

· Using every pixel as a feature has disadvantages:

- The number of weights in the network becomes extremely large, necessitating a very large training data set
- What the network learns is not translation invariant
 - · If I translate the image by one pixel, network inputs completely change

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

16

17

18

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

19

20

21

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

- Keep the same weights:
 - Reduce the number of weights
 - Ensure translation invariance
- The operation is nothing but convolution with a weight kernel
- This is not deep yet!

FDA U.S. FOOD & DRUG

24

22

"Alexer": A Krizhevsky, I Sutskever, GE Hinton "Imagenet classification with deep convolutional neural networks" (NIPS 2012). Slide Credit Junting Pan

y_i can be interpreted as probabilities

28

29

Generalization

- · Convolution, stride, max-pooling all reduce the number of weights to train, aimed at improving generalization
- · Still, in typical applications in imaging, there may be millions of parameters to tune
- · Additional techniques to improve generalization
 - Dropout
 - Data augmentation
 - Pre-training / Transfer learning

FDA U.S. FOOD & DRUG

Pre-training

Natural image abound – E.g., ImageNet dataset

- First few convolution layers of DNNs are feature extractors
- Use pre-trained early convolution layers of DNNs from natural images
 - Only train late convolution layers or the last fully-connected layers with medical images

96 convolutional kernels of size 11x11x3 learned by the first convolutional layer

A Krizhevsky, I Sutskever, GE Hinton "Imagenet classification with deep convolutional neural networks" (NIPS 2012)

FDA U.S. FOOD & DRUG

Deep Learning in Medicine

Web of Science Search All "Deep Learning" Publications

33

34

Applications in Medical Imaging

- · Lesion/disease detection, classification, staging
- Segmentation
- Lesion volumetry
- Landmark detection
- · Image quality evaluation
- Image registration
- Low-dose medical imaging
- Science Council Session: Big Data, Deep Learning and AI in Imaging and Radiation Oncology
- Rm. 605, Tue 1:45-3:45

FDA U.S. FOOD & DRUG

Potential Challenges

- Even more "black box" than feature engineering + ANN
- · Limited training data set size in medical imaging
- · Finding the right architecture/parameters/pre-training methods for successful training with limited datasets

36

Performance Assessment

· Generalize principles from CAD assessment

- AAPM CAD subcommittee - FDA CADe Guidances

- publications · "Evaluation of computer-aided
 - detection and diagnosis systems" Med Phys. 2013
- · "Quality assurance and training procedures for computer-aided detection and diagnosis systems in clinical use" Med Phys. 2013
- Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data Premarket Notification [510(k)] Submissions
- Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data -Premarket Approval (PMA) and Premarket Notification [510(k)] Submissions

37

• Now I turn it over to Dr. Lubomir Hadjiiski