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What is Deep Learning?

• A sub-field within machine learning

• Learning multiple levels of representation in order to model complex 

relationships among data 

– Higher-level concepts defined in terms of lower-level ones, the hierarchy of 

such features is called a deep architecture

• The hierarchy of concepts allows the computer to learn complicated 

concepts by building them out of simpler ones

• Typically implemented using artificial neural networks (ANNs)
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Where does deep learning fall within the field of artificial 

intelligence?
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Artificial 

Intelligence

• Imitate or surpass 

human intelligence.

• Varied methods 

such as knowledge 

bases, expert 
systems, machine 

learning Machine learning

• Learn without being 

explicitly programmed

• Example: Teach 

computer to play a range 

of video games with the 
input of pixels and game 

score ONLY 

Deep Learning

What has deep learning achieved so far?

• Record-breaking performance in

– Speech recognition

– Image recognition

– Natural language processing

– Recommendation systems
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Example: Image Recognition

• ImageNet Challenge:

– A benchmark in object category classification 

and detection

• ImageNet classification task

– 1000 categories

– Training: 1.28M images with ground truth

– Test: 100k images, predict 5 (out of 1000) 

classes 

• Correct if at least one of the predictions is the 

ground truth.
6
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ImageNet Challenge
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Deep Neural Networks

• The best-performing methods in ImageNet Challenge, as well as 

many other tasks have been deep artificial neural networks (ANNs)

• The best-performing deep ANNs in imaging tasks have been a special 

type of ANNs called deep convolutional neural networks (CNNs)
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Artificial Neuron
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• Perceptrons were first 

described in 1960’s

• Used for classification

• Fell into disfavor 
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Artificial Neural Networks

• ANNs were first 

introduced in 1980’s

• Have been very popular 

for a variety of tasks

• Provided conceptual and 

practical framework for 

deep neural networks 10
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• For many 

problems, a large 

training data set 

size (compared to 

the number of 

weights to train) is 

needed for proper 

training

Forward propagation only

Generalization
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Feature Engineering Approach for Imaging Applications
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• Does this patch 

from a CT image 

contain a lung 

nodule?

• Extract 

features

– Gray-scale

– Segmentation

• Shape, size, 

etc.

– Texture

– Others
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Deep Learning in Imaging Applications, Naive Approach
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• Train ANN to learn multiple levels 

of representation for the raw pixel 

data
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Deep Learning Approach 

• Using every pixel as a feature has disadvantages:

– The number of weights in the network becomes extremely large, necessitating 

a very large training data set

– What  the network learns is not translation invariant

• If I translate the image by one pixel, network inputs completely change 
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Deep Convolutional Neural Networks
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Weights

Deep Convolutional Neural Networks
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Same Weights

Deep Convolutional Neural Networks
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Same Weights
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Deep Convolutional Neural Networks
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Same Weights

Deep Convolutional Neural Networks
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Same Weights

Deep Convolutional Neural Networks
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Same Weights
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Deep Convolutional Neural Networks

• Keep the same weights:

– Reduce the number of weights

– Ensure translation invariance

• The operation is nothing but convolution with a weight kernel

• This is not deep yet!

22

Deep Convolutional Neural Networks
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“Alexnet”: A Krizhevsky, I Sutskever, GE Hinton “Imagenet classification with deep convolutional 

neural networks” (NIPS 2012). Slide Credit Junting Pan   
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Some Terminology: Stride
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Move the kernel by 4 pixels over the input 

image

Some Terminology: Max-Pooling
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Activation Function: Rectified Linear Units (ReLU)
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Last Layer: Softmax
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Generalization

• Convolution, stride, max-pooling all reduce the number of weights to 

train, aimed at improving generalization

• Still, in typical applications in imaging, there may be millions of 

parameters to tune

• Additional techniques to improve generalization

– Dropout

– Data augmentation

– Pre-training / Transfer learning
29

Dropout

• In training, during different 

iteration cycles, remove some 

of the connections

• Forward and backward 

propagation with removed 

weights

• Testing: Use all weights

30
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Data Augmentation

• Rotation

• Translation

• Scaling

• Contrast change

• Warping

• Insertion*

31
*Pezeshk A, Petrick N, Chen W, Sahiner B, “Seamless lesion insertion for data augmentation in CAD 

training,” IEEE Transactions on Medical Imaging, 2016

Pre-training

• Natural image abound

– E.g., ImageNet dataset

• First few convolution layers of 

DNNs are feature extractors

• Use pre-trained early 

convolution layers of DNNs 

from natural images 

– Only train late convolution 

layers or the last fully-connected 

layers with medical images 32

96 convolutional kernels of size 11x11x3 learned 

by the first convolutional layer

A Krizhevsky, I Sutskever, GE Hinton “Imagenet classification with 

deep convolutional neural networks” (NIPS 2012) 
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Web of Science Search

All “Deep Learning” Publications PubMed Search: “Deep Learning”
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Applications in Medical Imaging

• Lesion/disease detection, classification, staging

• Segmentation

• Lesion volumetry

• Landmark detection

• Image quality evaluation

• Image registration

• Low-dose medical imaging
34

Science Council Session:

Big Data, Deep Learning and AI in 

Imaging and Radiation Oncology

Rm. 605, Tue 1:45-3:45

Potential Challenges

• Even more “black box” than feature engineering + ANN

• Limited training data set size in medical imaging

• Finding the right architecture/parameters/pre-training methods for 

successful training with limited datasets 
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Performance Assessment

• Generalize principles from CAD assessment

36

– AAPM CAD subcommittee 

publications

• “Evaluation of computer-aided 

detection and diagnosis systems” 

Med Phys. 2013

• “Quality assurance and training 

procedures for computer-aided 

detection and diagnosis systems in 

clinical use” Med Phys. 2013

– FDA CADe Guidances

• Computer-Assisted Detection Devices Applied 

to Radiology Images and Radiology Device 

Data – Premarket Notification [510(k)] 

Submissions

• Clinical Performance Assessment: 

Considerations for Computer-Assisted 

Detection Devices Applied to Radiology 

Images and Radiology Device Data -

Premarket Approval (PMA) and Premarket 

Notification [510(k)] Submissions
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• Now I turn it over to Dr. Lubomir Hadjiiski
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