

University of Michigan Medical School The University of Michigan Department of Radiology

Outline

- Applications of Deep Learning to Medical Imaging
- Transfer Learning
- Some practical aspects of Deep Learning application to Medical Imaging

CNN in medical applications

Jhan H-P, Lo S-C B, Sahimer B, Lam KL, Holvie MA, Computer-aided detection of manmographic microcalcifications: Pattern recognition with an antificial neural network, 1995, Medical Physics o S-C B, Chan H-P, Lin J-S, Li H, Freedman MT and Mun SK 1995, Artificial convolution neural network for medical image nation recognition. Neural Neuro, 8: 1201-14.

CI

Sahier B, Chan H-P, Perick N, Wei D, Helvie MA, Ader DD and Goodsitt MM 1996 Classification of mass and nomal breast tissue: A convolution neural network classifier with spatial domain and texture images, IEEE Trans.on Medical Imaging 15 Samala RK, Chan H-P, Lur Y, Hadjiski L, Wei J, Helvie MA, Digital breast tomosynthesia: computer sided detection of clustered

Deep Learning

- Task to label voxels as inside or outside of bladder
- Large number of convolution kernels and weights
- Trained with 160,000 ROIs

-			
ľ			

Deep Learning – Bladder Lesion ROIs

Task – to label voxels as inside or outside of bladder
Large number of convolution kernels and weights

Dependence of DL-CNN performance on data size

Dependence of DL-CNN performance on data size

Transfer Learning?

Mass Detection in Digital Breast Tomosynthesis

1	ROIs of 128 x 128 pixels SFM-UM set
	SFM-USF set
	DM set
	DBT-MGH set
2 93 (A	DBT-UM set

Transfer Learning

	Mammography	
Dhungel et al 2017[2]	115 cases, 60% training, 20% validation and 20% test (5-fold cross-validation)	
Kooi et al 2017[5]	TL from VGG network for classification of solitary cysts in mammography	30,184 digitized screen-film exams for first stage training, 956 digital exams for second stage train/test
Samala et al 2016[7]	Transfer learning from mammography to detection of masses in digital breast tomosynthesis	2282 mammography views for pretraining, 324 DBT volumes from 232 patients for training and independent test
Huynh et al 2016[10]	Feature extraction from pretrained AlexNet and SVM classifier for classification of masses on digital mammography	219 lesions from 190 cases from Li et al[11]
	Lung	
Christodoulidis et al 2017[3]	Ensemble of CNNs, TL from six publicly available texture databases, classification of lung tissue patterns	135 CT scans from Interstitial lung disease cases
Paul et al 2016[6]	Three variations of VGG pretrained CNNs	Chest CT scans from 81 patients
Shin et al[13]	TL from CifarNet, AlexNet and GoogLeNet for thoraco-abdominal lymph node (LN) detection and interstitial lung disease classification	LN datasets: 90 patient CT scans ILD: 120 patients
	Colon	
Zhang et al 2017[4]	Two public non-medical image databases for TL	291 polyps cases
	Brain, Abdomen	
Han 2017[1]	TL from VGG network trained on natural scene image, Synthetic CT generation from MR, U-net architecture	18 patient cases, 6-fold cross-validation
Chenget al 2016[8]	Multi-domain transfer from joint learning of multiple auxiliary tasks for diagnosis of Alzheimer's disease	807 subjects from public database
Chenget al 2016[9]	Transfer learning from CaffeNet and VGG trained on natural scene images for classification of abdominal ultrasound	185 cases

DL-CNN Classification of Breast Masses

Samala RK, Chan HP, Hadjiiski L, Helvie MA, Cha K, Richter C. Physics in Medicine and Biology. (Submit Samala RK, Chan HP, Hadjiiski L, Cha K, Helvie MA, Richter C. Accepted to the RSNA meeting, 2017.

Tr	ansfer	Learni	ng DL-	CNN	
Subset of the 60,00 to train the DL-CNN	0 natural scenes I for transfer learn	images in the (ing. Each ROI v	CIFAR-10 datase vas 32x32 pixel:	et for the 10 class s.	es used
Airplane	Car	Bird	Cat	Deer	

Results – I	Leave-one-case-out
-------------	--------------------

AUC DL-CNN 0.75 ± 0.05 DL Bladder Transfer 0.72 ± 0.05 DL Natural Scene 0.68 ± 0.06 Radiologist 1 0.70 ± 0.06 Radiologist 2 0.75 ± 0.05		
DL-CNN 0.75 ± 0.05 DL Bladder Transfer Learning 0.72 ± 0.05 DL Natural Scene Transfer Learning 0.68 ± 0.06 Radiologist 1 0.70 ± 0.06 Radiologist 2 0.75 ± 0.05		AUC
DL Bladder Transfer Learning 0.72 ± 0.05 DL Natural Scene Transfer Learning 0.68 ± 0.06 Radiologist 1 0.70 ± 0.06 Radiologist 2 0.75 ± 0.05	DL-CNN	0.75 ± 0.05
DL Natural Scene Transfer Learning 0.68 ± 0.06 Radiologist 1 0.70 ± 0.06 Radiologist 2 0.75 ± 0.05	DL Bladder Transfer Learning	0.72 ± 0.05
Radiologist 1 0.70 ± 0.06 Radiologist 2 0.75 ± 0.05	DL Natural Scene Transfer Learning	0.68 ± 0.06
Radiologist 2 0.75 ± 0.05	Radiologist 1	0.70 ± 0.06
	Radiologist 2	0.75 ± 0.05

Convolution ac	tivation layer output
Bladder In/Out Learned Kernel	
Bladder Pre-Post Learned Kernel	
CIFAR Learned Kernel	

Convolution act	ivation layer output
Input mammography ROIs	
	C, activation layer (frozen)
	$C_{\rm p}$ activation layer (frozen)
	C_{r} activation layer (mammography trained)

Dependence of DL-CNN performance on data size

					DL	C	NΛ	l Pa	Ck	ag	es				
Software	Creator	Software license[a]	Open source	Plaform	Written in	Interface	OpenMP support	OpenCL support	CUDA support	Automatic differentiati on	Has pretrained models	Recurrent neta	Convolutio nal nets	RBMDBNs	Parallel execution (multi node)
Apache SINGA	Apache Incubator	Apache 2.0	Yes	Linux, Mac OS X, Windows	C++	Python, C++, Java	No	Yes	Yes	?	Yes	Yes	Yes	Yes	Yes
Catte	Berkeley Vision and Learning Center	BSD license	Yes	Linux, Mac OS X, Windows ^[2]	C++	Python, MATLAB	Yes	Under development	Yes	Yes	Yes	Yes	Yes	No	2
Deeplearring4j	Skymind engineerin g team; Deepleami rg4j community ; originally Adam Gibson	Apacha 2.0	Yes	Linux, Mac OS X, Windows, Android (Cross- platform)	java	Java, Scala, Clojure, Python (Kenas)	Yes	On roadmap	Yes	Computatio rel Graph	Yes	Yes	Yes	Yes	Yes
Dib	Davis King	Boost Software License	Yes	Cross- Platform	C++	<u>C++</u>	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
Keras	François Chollet	MIT license	Yes	Linux, Mac OS X, Windows	Python	Python, R	Only if using Thearo as backend	Under development for the Theano backend (and on roadmap for the TensorFlow backend)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MatConvNet	Andrea Vedaldi,Ka rel Lenc	BSD license	Yes	Windows, Linux ^[11] (OSX via Docker on roadmap)	C++	MATLAB, C++;	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes

_				
_				
-				

Software	Creator	Software license	Open source	Platom	Written	Interface	OpenMP support	OpenCL support	CUDA support	Automatic differentiatio	Has pretrained	Recurrent nets	Convolution al nets	RBM/DBNs	Parallel execution
Microsoft Cognitive Toolkit	Microsoft Research	MIT license ⁽¹²⁾	Yes	Windows, Linus ^{tra} (OSX via Docker on roadmap)	C++	Python, C++, Command line, ^[14] BrainScript ^[16] (.NET on roadmap ^[16])	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes
MXNet	Distributed (Deep) Machine Learning Community	Apache 2.0	Yes	Linux, Mac OS X, Windows, ^{pzgza} AWS, Android, ^{pag} IOS, JavaScript ^{2ag}	Small C++ core library	C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl	Yes	On roadmap	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Neural Designer	Antehics	Proprietary	No	Linux, Mac OS X. Windows	C++	Graphical user interface	Yes	No	No	?	?	No	No	No	?
OpenNN	Antehics	GNU LGPL	Yes	Cross-platform	C++	C++	Yes	No	No	?	?	No	No	No	?
TensorFlow	Google Brain team	Apache 2.0	Yes	Linux, Mac OS X, Windows ^[31]	C++, Python	Python (Kenas), C/C++, Java, Go. R ^[31]	No	On roadmap	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Theano	Université de Montréal	BSD license	Yes	Cross-platform	Python	Python	Yes	Under developme rt	Yes	Yestation	Through Lasagne's model.zoo	Yes	Yes	Yes	Yes
Torch	Ronan Collobert, Koray Kavukcuogi u, Clement Farabet	BSD license	Yes	Linux, Mac OS X, Windows, ¹⁰¹ Android, ¹⁰³ IOS	C, Lua	Luk, LuadiT, ^{juq} C, utility library for C++/OpenCL ^[10]	Yes	Third party implement ations ^{perger}	Yes ^{(cryat}	Through Twitter's Autograd ¹⁴⁴	Yes	Yes	Yes	Yes	Yes
Wolfram Mathematica	Wolfram Research	Proprietary	No	Windows, Mac OS X, Linux, Cloud	C++	Wolfnam Language	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	DL-CNN Packages													
				Ter	nsorF	low			Caffe	affe				
Software	Creator	Software license	Open source	Platform	Written in	Interface	CUDA support	Automatic differentiat ion ^{ro}	Has pretrained models	Recurrent nets	Convolutional nets	Parallel execution (multi node)		
Caffe	Berkeley Vision and Learning Center	BSD license	Yes	Linux, Mac OS X, Windows	C++	Python, MATLAB	Yes	Yes	Yes	Yes	Yes	,		
TensorFlow	Google Brain team	Apache 2.0	Yes	Linux, Mac OS X, Windows	C++, Python	Python (Keras), C/C++, Java, Go, R	Yes	Yes	Yes	Yes	Yes	Yes		
ttps://en.v	vikipedi	a.org/w	iki/Cor	npariso	on_of_c	leep_le	arning	_softwa	re					

Deep-Learning

- Hardware requirements:
 - Graphics Processing Unit (GPU) with specific CUDA (programming language) compatibility
 - Enough system memory (RAM) to hold image data

Software requirements:

- Operating system a specific Linux distribution
- CUDA software and GPU drivers
- Additional dependencies as required by DL software

Deep-Learning

Input Image Preparation:

- Size of the images dependent on the task
- Distribution of image values system may train better with a specific image distribution (min, max, peak)

Input Data File Preparation:

- Create data format required by DL package
 - Cuda-convnet pkl
 - Caffe HDF5
 - Tensorflow binary
- Contains both image and reference truth data
- Can use existing code available online (ie Python libraries)

Deep-Learning

- Running the network:
 - Determine network parameters by changing a parameter file or through GUI
 - Tutorials and examples online

Training parameters:

- Structure number of layers and nodes
- Learning rate and bias
- Testing "Deployment"
 - Apply trained model to test data set to get results

Deep-Learning

- Visualization:
 - Packages contain general functions to visualize parts of the network
 - May need to write a program to extract specific parts

Results:

 Validation and interpretation of the results very important to develop useful models

Conclusions

- Deep Learning is promising approach for Medical Imaging applications
- Transfer Learning is important technique for applications with small datasets
- Transfer Learning still needs sufficient data for robust training

77

Acknowledgments

CAD Research Lab : Heang-Ping Chan, PhD Ravi Samala, PhD Kenny Cha, MS

Clinical Faculty

Richard Cohan, MD Elaine Caoili, MD Anon Weizer, MD Ajjai Alva, MD Mark Heivie, MD Marklyn Roubidoux, MD Chintana Paramagul, MD

