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Can deep learning help in cancer diagnosis
and treatment?
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» Applications of Deep Learning to Medical Imaging

» Transfer Learning

* Some practical aspects of Deep Learning application
to Medical Imaging
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Deep Learning

= Deep-Learning Convolutional Neural Network (DL-CNN)
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= Task — to label voxels as inside or outside of
bladder

= Large number of convolution kernels and
weights

= Trained with 160,000 ROIls

1|
II“!““I “lll ROls inside the bladder

Inside the Examples of training ROIs

M bladder

. P
Training

1-Inside

Bladder Likelihood Map Generation —
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Mass Detection in Digital Breast Tomosynthesis
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Samala RK, Chan H-P, Hadjiiski L, Helvie MA, Wei J, Cha K. 2016. Mass Detection i Digital Breast Tomosynthesis:
Deep Convolutional Neural Network with Transfer Learning from Mammography Medical Physics 43 6654-66
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Sensitivity

Transfer Learning DL-CNN

Mammography training
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Transfer Learning

Mammogra
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Transfer Learning

Pulmonary Embolism, Other
L from AlexNet for four medicalimaging tasks.

Polyp detection: 40 short colonoscopy videos.
Image qualty of colonoscopy videos: & complte.
colonoscopy videos.

mbolism detection in CT: 121 cases.
‘Segmentation in ulrasonographic images: 92 Carotid
intma-media thickness videos

DL-CNN Classification of Breast Masses

‘Singlo-task transfor training

Samala RK, Chan HP, Hadjiiski L, Helvie MA, Cha K, Richter C. Physics in Medicine and Biology. (Submitted)

TRUE.POSITIVE FRACTION

STTL: Single-task transfer learning
MTTL: Multi-task transfer learning

Samala RK, Chan HP, Hadjiiski L, Cha K, Helvie MA, Richter C. Accepted to the RSNA meeting, 2017.
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Bladder Tumor: Pre- & Post-Treatment
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Deep Learning CNN
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1. Cha K, Hadjiski L, Chan H-P, Samala RK, Cohan RH, Caoili EM, Weizer AZ, and Alva A. 2016 Deep-Learning Bladder Can
cer Treatment Response Assessment in CT Urography. Presented at RSNA 2016, SSQ18-01

2. Cha K, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, Caoili EM, Paramagul C, and Samala RK. 2016
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning.
Nature - Scientific Reports (Accepted)

Transfer Learning DL-CNN

Subset of the 160,000 bladder inside and outside ROIs used to
train the DL-CNN for transfer learning. Each ROl was 32x32 pixels

ROIs identified as being ROIs identified as being
inside the bladder outside the bladder

Transfer Learning DL-CNN

ubset of the 60,000 natural scenes images in the CIFAR-10 dataset for the 10 classes used
to train the DL-CNN for transfer learning. Each ROl was 32x32 pixels.
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sfer Learning DL-CNN
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Cha K, Hadjiiski L, Chan H-P, Samala RK, Cohan RH, Caoili EM, Paramagul C, Alva A, and Weizer AZ. 2017.
Proceedings of SPIE Medical Imaging 10134 1013404

ults — Leave-one-case

I AUC

DL-CNN 0.75+0.05

DL Bladder Transfer
Learning
DL Natural Scene
Transfer Learning

0.72 £ 0.05
0.68 +0.06
Radiologist 1 0.70 + 0.06

Radiologist 2 0.75 £ 0.05

Convolution activation layer

Bladder In/Out Learned Kernel
Bladder Pre-Post Learned Kernel

CIFAR Learned Kernel
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C, activation layer (frozen)

C, activation layer (frozen)

C, activation layer (mammography trained)
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Samala RK, Chan H-P, Hadjiiski L, et al

Layers frozen for transfer learning
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Single-task transfor training

i

Multi-task transfer training

Transfer Learning

Samala RK, Chan H-P, Hadjiiski L, et al
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DL-CNN Packages
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DL-CNN Packages
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= Hardware requirements:
= Graphics Processing Unit (GPU) with specific CUDA
(programming language) compatibility
= Enough system memory (RAM) to hold image data

= Software requirements:
= Operating system — a specific Linux distribution
= CUDA software and GPU drivers
= Additional dependencies as required by DL software

= Input Image Preparation:
= Size of the images — dependent on the task
= Distribution of image values — system may train better with a
specific image distribution (min, max, peak)
= Input Data File Preparation:
= Create data format required by DL package
= Cuda-convnet — pkl
= Caffe — HDF5
= Tensorflow — binary
= Contains both image and reference truth data
= Can use existing code available online (ie Python libraries)
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= Running the network:
= Determine network parameters by changing a parameter file or
through GUI
= Tutorials and examples online

= Training parameters:
= Structure — number of layers and nodes
= Learning rate and bias

= Testing — “Deployment”
= Apply trained model to test data set to get results

= Visualization:
= Packages contain general functions to visualize parts of the
network
= May need to write a program to extract specific parts

= Results:

= Validation and interpretation of the results very important to
develop useful models

» Deep Learning is promising approach for Medical
Imaging applications

» Transfer Learning is important technique for
applications with small datasets

» Transfer Learning still needs sufficient data for
robust training
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