
Immune Priming with Ultrasound

Chandan Guha, MBBS, PhD

Professor and Vice Chair, Radiation Oncology Professor, Urology and Pathology Director, Einstein Institute of Onco-Physics Montefiore Medical Center Albert Einstein College of Medicine, Bronx, NY cguhamd@gmail.com

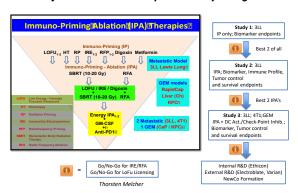
- Conflicts and Grants
 NIH (R01 EB009040)
- NCI SBIR grant with Celldex Therapeutics, Inc.
- Project Energy with Johnson & Johnson

Tumor Evolution

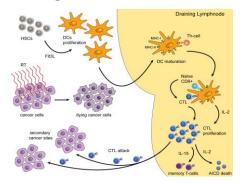
Escape (Epigenetic loss - Antigen presentation) Suppression (IL10, TGFß, PD-L1) Cooption (Macrophage, Ectopic Lymphoid structure)

<u>F</u>ocal <u>O</u>ncology <u>C</u>linical <u>A</u>daptive <u>L</u>earning (FOCAL) **Cancer Clinic Network**

- 1. Ablative Therapies for local control induces anti-tumoral immunity, which in turn helps local control.
- 2. Ablative Therapies for systemic immunity:


Immune Priming Ablation (IPA) for In Situ Tumor Vaccines

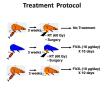
- a. UPR => ER stress => Antigen Processing / Presentation
- b. "Eat Me" and DAMP signals
- c. Reversal of tolerance
- d. Antigen Presentation (neo-antigens & cryptic antigens)

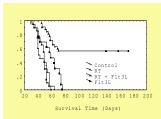

"Focal Therapy for Systemic Cure"

1

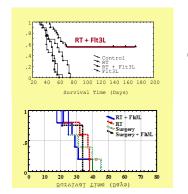
Project ENERGY.01: Proposed Study Design

Autologous in situ tumor vaccines

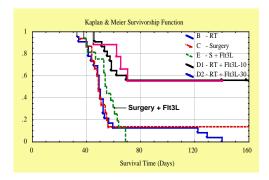

[CANCER RESEARCH 59, 6621–6032, December 15, 1999]


Advances in Brief

Flt3-Ligand Administration after Radiation Therapy Prolongs Survival in a Murine Model of Metastatic Lung Cancer


Prabir K. Chakravarty, Alan Alfieri, Elaine K. Thomas, Vivek Beri, Kathryn E. Tanaka, Bhadrasain Vikram, and Chandan Guha $^{\rm I}$

Department of Radiation Occology [P.K.C., A.A., V.B., B.Y., C.G.] and Pathology [E.K.T., K.E.T.], Albert Eissnén College of Medicine, Monréfore Medical Contra Boux, New York, 1046]; Brit Israel Medical Center, New York, New York 10008 [A.A.]; and Januares Corporation, Sentife, Washington 90101 [E.K.T., K.E.T.]


RT + Flt3L Improves Survival of Tumor-bearing C57BI/6 Mice

C57BI/6 mice (RT+Flt3L - 55% cured)

> Immunodeficient Nude mice (RT+Flt3L - 0% cured)

Systemic Effects of Primary Tumor Irradiation

FLT3 Ligand Immunotherapy and Stereotactic Radiotherapy for Advanced Non-small Cell Lung Cancer

- SBRT will be administered during the first week of study therapy.
- A single pulmonary lesion that measures at least 1 cm in greatest dimension will be treated
- Daily subcutaneous injections of CDX-301 (75 µg/kg) will be administered for 5 days, beginning on the first day of SBRT.

	Pre-rx	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Weeks 16, 24, 32
Stereotactic Radiotherapy (SBRT)		XXX								
FLT3 Ligand Therapy		XXXXX								
History and Physical Examination	X	X	X	X	X		X		X	X
Blood Tests: CBC, CMP	X	X	X	X	X		X		X	X
Whole body PET/CT	X								X	X
Immune Correlates	Y		Y		¥				Y	

Sample size: 29 patients

4.3 Primary Endpoint

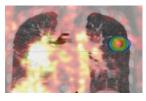
The primary endpoint is progression-free survival rate at four months (PFS4), defined as the rate estimate of the percentage of patients who are alive and progression-free at 16 weeks (~4 months) after initiation of study therapy.

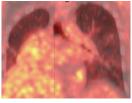
FLT3 Ligand Immunotherapy and Stereotactic Radiotherapy for Advanced Non-small Cell Lung Cancer

- SBRT will be administered during the first week of study therapy.
- A single pulmonary lesion that measures at least 1 cm in greatest dimension will
- Daily subcutaneous injections of CDX-301 (75 µg/kg) will be administered for 5 days, beginning on the first day of SBRT.

	Pre-rx	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Weeks 16, 24, 32
Stereotactic Radiotherapy (SBRT)		XXX								
FLT3 Ligand Therapy		XXXXX								
History and Physical Examination	X	X	X	X	X		X		X	X
Blood Tests: CBC, CMP	X	X	X	X	X		X		X	X
Whole body PET/CT	X								X	X
Immune Correlates	X		X		X				X	

Sample size: 29 patients

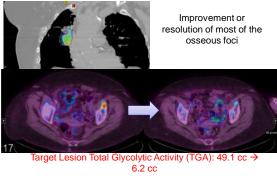

Ablative SBRT dose fractionation


- 34 Gy x 1 Fx
 18 Gy x 3 Fx
 10 Gy x 5 Fx

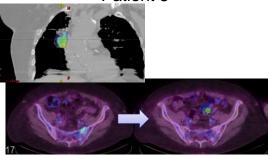
Study Subjects

1	73 year-old Korean male	Right lung squamous cell carcinoma with multiple lung masses and bilateral mediastinal adenopathy	Carboplatin + gemcitabine	50 Gy in 5 fractions to RLL mass	Progression at 6 weeks, death at 4 months
2	55 year-old Hispanic female	Right lung adenocarcinoma, with bilateral lung nodules	Chemoradiotherapy for localized disease, nivolumab for metastatic disease	34 Gy in 1 fraction to LUL nodule	Partial response at 2 months, stable at 4 months
3	80 year-old Caucasian female	Right lung squamous cell carcinoma with spine and pelvic metastases	Chemoradiotherapy for localized disease, carboplatin + gemcitabine for metastatic disease, nivolumab	50 Gy in 5 fractions to right lung mass	Partial response at 2 months
4	73 year-old Caucasian female	Right lung adenocarcinoma with mediastinal adenopathy and liver metastasis	Carboplatin/ + pemetrexed, maintenance pemetrexed	50 Gy in 5 fractions to RLL mass	PET/CT on 4/27

Patient 2

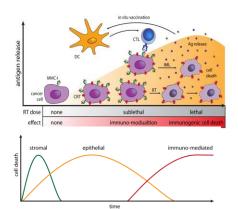


Right lung mass reduced from 5.0 cm (maximum SUV 10.7) to 2.1 cm (maximum SUV 6.5) on first posttreatment PET/CT

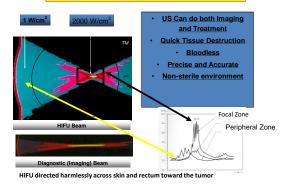

Target Lesion Total Glycolytic Activity (TGA): 1.0 cc → 0.3 cc

Other lesions' TGA: 44.7 cc → 4.5 cc

Patient 3



Patient 3


Target Lesion Total Glycolytic Activity (TGA): 49.1 cc → 6.2 cc

Ene	Energy activated <i>in situ</i> Tumor Vaccines POC Studies											
		Tumor Models	End Points	Limitation								
Single Fraction SFRT 25-60 Gy	Flt3L +/- CD40L	Lewis Lung 3LL in C57/Bl6 BN1LNE Liver (HCC) in Balb/c	Primary Tumor Growth Metastases Survival Immune assays	Murine Ectopic Transplantation Models RT Dose Fractionation								
20 Gy	TLR9 agonist	Lewis Lung 3LL in C57/Bl6	PTG, Mets, Survival	RT to Draining Lymph Node								
10 Gy	Listeria- PSA ADXS31- 142	TRAMPC1 TPSA23 Prostate Cancer	PTG and Immune Assays	Break Tolerance to self antigens Small Animal								
20Gy x 3	PD1-Fc	Lewis Lung 3LL in C57/Bl6	PTG, Mets, Survival	Treatment								
LOFU	HIFU	TPSA23 Prostate	PTG, Immune Assays	 Lack of Immune Surveillance and 								
LOFU	SBRT (10 Gy x 3)	B16 Melanoma	PTG, Mets, Survival Immune Assays	carcinogenic environment								

Acoustic priming

ULTRASOUND -- ADVANTAGES

Therapeutic Ultrasound as an autologous *in situ* tumor vaccine

- HIFU = High Intensity Focused Ultrasound
- MRgFUS = MR-guided Focused Ultrasound
- TULSA = Transurethral ultrasound ablation
- LOFU = Low intensity (energy) focused ultrasound (LOFU coined by Guha group)
- SST = Sonic Stress Therapy
- APT Acoustic Priming Therapy

LOFU parameters

	Condition #1	Condition #2	Condition #3	Condition #4	Condition #5
Duty Cycle (%)	1	25	50	75	100
Power (W)	32	16	8	4	2
Time (ms)	1000	625	1250	2500	5000
Thermal Energy (J)	0.32	2.5	5	7.5	10
Peak Negative Pressure (MPa)	8.14	6.08	4.58	3.34	2.46

Thermal	
Energy	

Mechanical Energy

The "sonic stress" of LOFU

Gene function	Genes affected by LOFU treatment
1. Protein Folding	DNAJB1, HSPH1, HSPE1, HSPB1, HSPD1, HSPA4L, CRYAB, HSPA6, HSPA7, HSP90AA1, HSP90AA4P, DNAJA4, FKBP4, LGSN, PTGES3
2. Cell cycle regulation	IER5, JUN,CACYBP, GPRC5A, RRAD, WEE2
3. Cytokines	IL8
4. Receptors	CSF2RB, IL7R, NPR1, RXFP2, FLT4, ITGA2
5. Cytoskeleton integrity	FAM101B, TCP1
6. Transcriptions	ATF3, ANKRD1, EYA4, KAT2A
7. Transporters	SLC22A2, SLC22A16, RHAG
8. Apoptosis regulation	NLRC4, ANGPTL4, BAG3
9. Peptidase	NAALADL1, MEP1A, PLOD2

_	,		
ı	7		

Gene Ontology

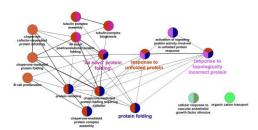


Figure 2 Gene ontology GoTerm network. After LOFU treatment, the gene response showed extensive upregulation of genes that are related to unfolded protein.

Gene Expression with qRT-PCR

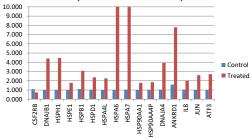
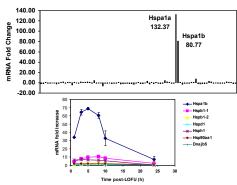



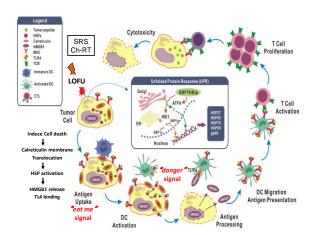
Figure 4 qRT-PCR of select genes from the RNA sequencing. Genes were selected from pathways highlighted in the KEGG pathway analysis and validated using qRT-PCR. The data correlated well with the RNA sequencing results. HSPA6 and HSPA7 were highly regulated to 200+ and 25+ fold respectively.

Increase in Hsp70 mRNA expression after LOFU treatment

Immunomodulation of tumor cells

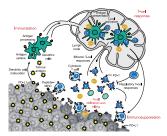
In vitro Effect of LOFU on Cell Surface Markers

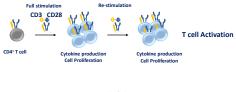
- Summary of in vitro data under JJI-ENERGY


 > LoFu is non-ablative

 > LoFu induces "sonic stress" on cancer cells

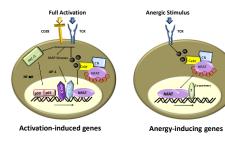
 > Sonic stress signature is consistent across cell types and indicative of immune stimulation


			3 Watt LoFu						5 Watt LoFu					
			ILL	4	F1	TPS	TPSA23		3LL		4T1		TPSA23	
		6h	24h	6h	24h	6h	24h	6h	24h	6h	24h	6h	24h	
	HSP70													
ER Stress	CRT													
	BiP													
	MHCI													
Co-Stimulatory	CD86													
Death	Fas													
Receptors	CD40													
Inhibitory	PD-L1													
0	0 5 10 20 30													

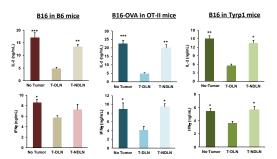


Treat the tumor draining lymph node (TDLN – immune privilege site)

- Reprogram tolerogenic DCs (IDO inhibitors)
- Inhibit regulatory T cells (Treg)
- Reverse T-cell anergy in TDLN LOFU primary tumor

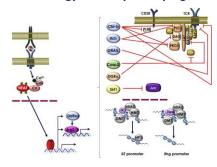


T cell activation vs. T cell anergy

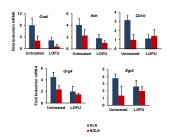


T cell Activation vs. T cell Anergy

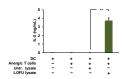
B16 tumors induced CD4⁺ T cell anergy



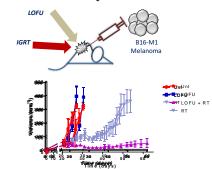
LOFU prevents B16-induced CD4+ T cell anergy



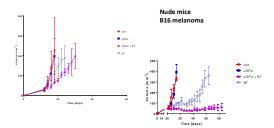
T cell anergy: transcriptional program



LOFU prevents B16-induced CD4+ T cell anergy

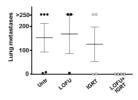


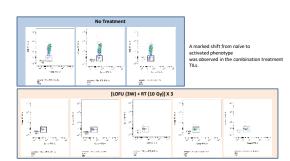
LOFU can reverse established T cell anergy

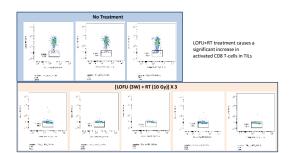


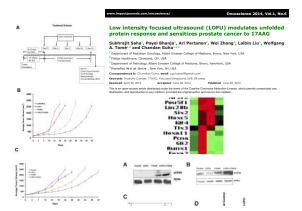
LOFU as immune adjuvant for IGRT

LOFU as adjuvant for IGRT requires T cells

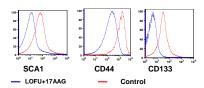

LOFU as adjuvant to potentiate effect of RT and improve control of distal metastases



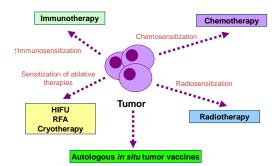




$\label{eq:cd2L-VE} CD62L^{\text{-VE}}/CD4^{\text{+VE}} \ population \ in \ Tumor \ infiltrating \ lymphocytes \ (TILs)$



CD62L-VE/CD8+VE in Tumor infiltrating lymphocytes (TILs)



LOFU+17AAG reduces the expression of prostate cancer stem cell marker

Did the number of cells go down or expression?

Acoustic Priming

The FOCAL Team

Guha Laboratory
Students.:
Lorenzo Agoni
Karin Skalina
Talicia Savage
Justin Tang
Research Associates:
Huagang Zhang
Associates:
Indranil Basu

Lisa Scandiuzzi

Clinical Trials Rafi Kabariti Nitin Ohri Madhur Garg Medical Physics
Assoc.: Patrik Brodin
Director: Wolfgang Tome

Sanmay Bandyopadhyay

Fernando Macian

Thank you!

