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Grating-Based X-Ray Phase Contrast Imaging 
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But how does a coarse detector element resolve 
tiny changes in the diffraction fringe pattern?  
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But how does a coarse detector element resolve 
tiny changes in the diffraction fringe pattern?  
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(Δφ is x-ray phase shift 

induced by the object) 
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π-Phase Diffraction Grating for 32 keV X-Rays 

π phase grating 

designed for 32 keV x-rays 
32 keV x-rays 



What would happen if the x-ray energy deviate from 
the designed operating energy? 

 The structure height of the grating (L) was set so that for 32 keV x-rays: 

 

 

 

 

 Then for the same grating (same L and ρe), when the x-ray energy is16 keV 

32keV 0 e 32keVr L       

16keV 0 e 16keV

0 32keVe (2 ) 2

r L

r L

  

  

  

  

π-Phase Diffraction Grating for 32 keV X-Rays 

Same grating 

Same structure height 
16 keV x-rays 

Actual phase shift: -2

2π-Phase Grating for 16 keV X-Rays 
Diffraction Pattern with Polychromatic Source 
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( ) :  Detector signal at the th phase step

( ) :  Number of x-ray photons at the th phase step

( ) :  X-ray spectrum

( ) :  Detector energy response function
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Diffraction Pattern with Polychromatic Source:  
EID vs. PCD 
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Fringe Visibility 

Energy-Dependent Interferometer Performance: 
Experimental Demonstration 

Visibility of the diffraction pattern 

Experimental moiré fringe pattern 

recorded by an energy-resolving PCD 

Energy-Dependent Interferometer Performance: 
Experimental Demonstration 

Visibility of the diffraction pattern 

Peaked 

at 32 keV 

Experimental moiré fringe pattern 

recorded by an energy-resolving PCD 
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Visibility of the diffraction pattern Differential phase contrast images 

recorded by an energy-resolving PCD 



7/29/2017 

4 

DPC Imaging with Energy-Integrating Detector 
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Reduction of Bias using Energy-Resolving PCD 
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 Differential phase contrast image signal 𝜙 is related to the energy by 

 

 

 

 where numerical factor α is independent of x-ray energy 𝐸.  
 

 Define 

 

 Equation (1) becomes 
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Rank (J) = 1 

The number of rows in 𝐽 is determined by number of image pixels, and 

the number of columns in 𝐽 is determined by the number of energy bins 

𝐸1 𝐸2 𝐸3 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 

𝜙 𝑥, 𝑦, 𝐸 =
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The wedge phantom provides a 
constant x-ray refraction angle 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 
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25 

Air 
PMMA 
wedge 

Thin: 1.5 cm PMMA 

Middle: 3.5 cm PMMA 

Thick: 5.5 cm PMMA 

1.5 cm PMMA 3.5 cm PMMA 5.5 cm PMMA 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 

Impacts of Detector Electronic Noise in Multi-Contrast 
Imaging: Cascaded Systems Analysis 
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Impacts of Detector Electronic Noise: Results of 
Cascaded Systems Analysis 
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Impacts of Electronic Noise Rejection: Experimental Studies 

Detector type Single photon counting Energy integrating 

Model XCounter XC-FLITE X-1 Shad-o-Box 2048 

Pixel size 100 µm 96 µm (after 2 x 2 binning) 

Detector active area 15.5 cm x 1.3 cm 10 cm x 5 cm 

Conversion method Direct Indirect 

Conversion material CdTe Gd2O2S 

Maximum frame rate 1000 fps 2.7 fps 

Readout chip CMOS CMOS 

Bit depth 12 12 

kV range 5-300 10-160 

Energy integrating detector (EID) 

X Ji, et al., “Energy Calibration of Photon Counting 

Detectors Based On Measurement of X-Ray Attenuation 
Curve of K-Edge Materials.”  

Wednesday, 7:30 AM - 9:30 AM Room: 601 

Photon counting detector (PCD) 

PMMA 

Impacts of Electronic Noise: Tomosynthesis Images 
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1.2 mGy 

0.9 mGy 

0.4 mGy 

0.2 mGy 

Absorption Contrast 
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Impacts of Electronic Noise: CT Images 
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Phase Contrast 

EID PCD 
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Additional Benefit of PCD: Improvement in 
Detector DQE(f) 

Comparing PCD with EID #1 (thin scintillator): 

PCD has slightly better MTF and much better DQE 

Additional Benefit of PCD: Improvement in 
Detector Spatial Resolution 

Comparing PCD with EID #2 (thick columnar scintillator): 

Similar DQE, but PCD has much better MTF 
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 Performance of x-ray phase contrast imaging (XPCI) is sensitive to 

x-ray energy 

 Visibility of x-ray diffraction fringes is highest at designed operating energy; 

it may drop significantly at other energy levels 

 Consequently, the use of polychromatic x-rays decreases fringe visibility 

 Accuracy of the estimated phase contrast signal is highest with 

monochromatic x-rays 

 Performance of XPCI is also sensitive to electronic noise 

accumulated over multiple phase steps 

 Similar to conventional x-ray imaging, performance of XPCI 

strongly depends on detector DQE  

 Compared with conventional energy-integrating detectors, photon 

counting detectors have major advantages in x-ray phase contrast 

imaging 

 The energy resolving capability of PCD offers the freedom of 

▪ Selectively utilize a narrow energy window to boost the diffraction efficiency of the grating 

interferometer, or 

▪ Jointly utilize all energy windows to boost signal-to-noise ratio 

 Rejection of electronic noise accumulated over multiple phase steps 

significantly improves phase contrast image quality, especially at low 

radiation exposure levels 

 Improved DQE offered by PCD leads to better image quality or radiation 

dose efficiency 
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Without anti-charge sharing

 The extent to which PCD 

benefits phase contrast imaging 

strongly depends on its energy 

resolution 

 Emerging technologies such as 

anti-charge sharing could 

provide significant energy 

resolution improvement 

 Further developments in PCD 

technologies could further 

improve phase contrast imaging 

performance 
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Americium-241: courtesy of UW Cyclotron Group 
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