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Grating-Based X-Ray Phase Contrast Imaging 
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But how does a coarse detector element resolve 
tiny changes in the diffraction fringe pattern?  
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But how does a coarse detector element resolve 
tiny changes in the diffraction fringe pattern?  
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(Δφ is x-ray phase shift 

induced by the object) 
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:  decrement in real part of refractive index

:  electron density
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X-ray wave 

π-Phase Diffraction Grating for 32 keV X-Rays 

π phase grating 

designed for 32 keV x-rays 
32 keV x-rays 



What would happen if the x-ray energy deviate from 
the designed operating energy? 

 The structure height of the grating (L) was set so that for 32 keV x-rays: 

 

 

 

 

 Then for the same grating (same L and ρe), when the x-ray energy is16 keV 
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π-Phase Diffraction Grating for 32 keV X-Rays 

Same grating 

Same structure height 
16 keV x-rays 

Actual phase shift: -2

2π-Phase Grating for 16 keV X-Rays 
Diffraction Pattern with Polychromatic Source 
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( ) :  Detector signal at the th phase step

( ) :  Number of x-ray photons at the th phase step

( ) :  X-ray spectrum

( ) :  Detector energy response function
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Diffraction Pattern with Polychromatic Source 
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50 kV spectrum

keV
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Photon Counting Detector 
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Diffraction Pattern with Polychromatic Source:  
EID vs. PCD 
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80%

85%

90%

95%

100%

Fringe Visibility 

Energy-Dependent Interferometer Performance: 
Experimental Demonstration 

Visibility of the diffraction pattern 

Experimental moiré fringe pattern 

recorded by an energy-resolving PCD 

Energy-Dependent Interferometer Performance: 
Experimental Demonstration 

Visibility of the diffraction pattern 

Peaked 

at 32 keV 

Experimental moiré fringe pattern 

recorded by an energy-resolving PCD 

18 keV 
energy bin 

32 keV 
energy bin 

50 keV 
energy bin 

Visibility of the diffraction pattern Differential phase contrast images 

recorded by an energy-resolving PCD 
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DPC Imaging with Energy-Integrating Detector 
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Reduction of Bias using Energy-Resolving PCD 
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 Differential phase contrast image signal 𝜙 is related to the energy by 

 

 

 

 where numerical factor α is independent of x-ray energy 𝐸.  
 

 Define 

 

 Equation (1) becomes 

 

 

𝜙 𝑥, 𝑦, 𝐸 = −
𝛼
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Rank (J) = 1 

The number of rows in 𝐽 is determined by number of image pixels, and 

the number of columns in 𝐽 is determined by the number of energy bins 

𝐸1 𝐸2 𝐸3 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 

𝜙 𝑥, 𝑦, 𝐸 =
1

𝐸2
× φ 𝑥, 𝑦  
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Air 
PMMA 

wedge 

𝑱 = 𝑼𝚺𝑽𝑻 = 𝝈𝒊𝒖𝒊⨂𝒗𝒊
𝑻

𝑵

𝒊=𝟏

≈ 𝝈𝟏𝒖𝟏⨂𝒗𝟏
𝑻
 

The wedge phantom provides a 
constant x-ray refraction angle 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 
24 

Without 
Rank-one 

With 
Rank-one 

2D NPS 
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25 

Air 
PMMA 
wedge 

Thin: 1.5 cm PMMA 

Middle: 3.5 cm PMMA 

Thick: 5.5 cm PMMA 

1.5 cm PMMA 3.5 cm PMMA 5.5 cm PMMA 

Y. Ge, et al., Vol. 24, Issue 12, pp. 12955-12968, Opt. Exp. (2016) 

Impacts of Detector Electronic Noise in Multi-Contrast 
Imaging: Cascaded Systems Analysis 
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Impacts of Detector Electronic Noise: Results of 
Cascaded Systems Analysis 
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Impacts of Electronic Noise Rejection: Experimental Studies 

Detector type Single photon counting Energy integrating 

Model XCounter XC-FLITE X-1 Shad-o-Box 2048 

Pixel size 100 µm 96 µm (after 2 x 2 binning) 

Detector active area 15.5 cm x 1.3 cm 10 cm x 5 cm 

Conversion method Direct Indirect 

Conversion material CdTe Gd2O2S 

Maximum frame rate 1000 fps 2.7 fps 

Readout chip CMOS CMOS 

Bit depth 12 12 

kV range 5-300 10-160 

Energy integrating detector (EID) 

X Ji, et al., “Energy Calibration of Photon Counting 

Detectors Based On Measurement of X-Ray Attenuation 
Curve of K-Edge Materials.”  

Wednesday, 7:30 AM - 9:30 AM Room: 601 

Photon counting detector (PCD) 

PMMA 

Impacts of Electronic Noise: Tomosynthesis Images 

EID PCD 

1.2 mGy 

0.9 mGy 

0.4 mGy 

0.2 mGy 

Absorption Contrast 

EID PCD 

Phase Contrast 

Impacts of Electronic Noise: CT Images 

Absorption Contrast 

EID PCD 

Phase Contrast 

EID PCD 
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Additional Benefit of PCD: Improvement in 
Detector DQE(f) 

Comparing PCD with EID #1 (thin scintillator): 

PCD has slightly better MTF and much better DQE 

Additional Benefit of PCD: Improvement in 
Detector Spatial Resolution 

Comparing PCD with EID #2 (thick columnar scintillator): 

Similar DQE, but PCD has much better MTF 
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Xu et al., RSNA 2016 

Experimental Results of In-house Phantom  
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 Performance of x-ray phase contrast imaging (XPCI) is sensitive to 

x-ray energy 

 Visibility of x-ray diffraction fringes is highest at designed operating energy; 

it may drop significantly at other energy levels 

 Consequently, the use of polychromatic x-rays decreases fringe visibility 

 Accuracy of the estimated phase contrast signal is highest with 

monochromatic x-rays 

 Performance of XPCI is also sensitive to electronic noise 

accumulated over multiple phase steps 

 Similar to conventional x-ray imaging, performance of XPCI 

strongly depends on detector DQE  

 Compared with conventional energy-integrating detectors, photon 

counting detectors have major advantages in x-ray phase contrast 

imaging 

 The energy resolving capability of PCD offers the freedom of 

▪ Selectively utilize a narrow energy window to boost the diffraction efficiency of the grating 

interferometer, or 

▪ Jointly utilize all energy windows to boost signal-to-noise ratio 

 Rejection of electronic noise accumulated over multiple phase steps 

significantly improves phase contrast image quality, especially at low 

radiation exposure levels 

 Improved DQE offered by PCD leads to better image quality or radiation 

dose efficiency 
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Without anti-charge sharing

 The extent to which PCD 

benefits phase contrast imaging 

strongly depends on its energy 

resolution 

 Emerging technologies such as 

anti-charge sharing could 

provide significant energy 

resolution improvement 

 Further developments in PCD 

technologies could further 

improve phase contrast imaging 

performance 
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Americium-241: courtesy of UW Cyclotron Group 
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