Stationary Digital Tomosynthesis
Using
CNT X-Ray Source Array

Otto Zhou, PhD; Jianping Lu, PhD
Yueh Z. Lee, MD/PhD; Cherie Kuzminik, MD
Enrique Platin, PhD; Andre Mol, DDS/PhD; Lars Gaalaas, DDS
Christy Inscoe, MS; Connor Puett, BS; Allison Hartman, PhD; Jabari Calliste, PhD;
Andrew Tucker, PhD; Emily Gidcumb, PhD
Physics, Applied Physical Sciences, Biomedical Engineering, Radiology, Maxillofacial
Radiology, University of North Carolina at Chapel Hill

Outline

- Motivation
- Advances in the CNT x-ray source array technology
- Breast tomosynthesis
- Dental tomosynthesis

Current Digital Tomosynthesis Scanners

- Mechanically moving an x-ray tube over a finite angular range to collect the
 projection images for reconstruction
- Focal spot motion blurs the image, reduces detection sensitivity
- Long imaging time, patient motion further degrades image quality
Stationary Tomosynthesis

Enabling Technology: Distributed X-Ray Source Array with Carbon Nanotube (CNT) Field Emitters

Advantages
- Field emitted electrons -> Electronically controlled radiation
- Easy physiological gating
- Flexible array configuration

Challenges
- Tube current (mA)
- Energy (kVp)
- Source-to-source consistence
- Reliability
X-Ray Tube Current
- CNT emitters can generate high current needed
- X-ray tube power is limited by anode heat management, no different from a regular x-ray tube
- Current fixed anode design limits the maximum output to what can be achieved with a conventional fixed anode thermionic x-ray tube

1 A emission current from a CNT cathode

X-Ray Tube Energy
- The unipolar design makes high-voltage more challenging
- Significant improvement in high voltage stability
- 160kVp CNT x-ray source array fabricated

Source-to-Source Consistency
- Inconsistency from variations in CNT cathodes, and manufacturing tolerance
- Variation in the x-ray flux readily regulated through an automatic feedback loop in the extraction voltage.
- Variation in the focal-spot sizes are within a reasonable range.
Flexible Array Configuration

- Source array configuration can be tailored for specific system need
- Allow novel geometries for CT and tomosynthesis

Lifetime

- Depending on the current, current density, vacuum…
- Accelerated lifetime performed for equivalent of 7 yrs (breast tomo) and 5 yrs (dental tomo) tubes

Stationary Breast Tomosynthesis

Anticipated clinical benefit

- Higher spatial resolution
- Better sensitivity for micro-calciﬁcation
- Shorter scanning time
- Wider angular range
- Less Z-axis artifact
- Less dose (tomo only)
Stationary DBT (s-DBT)

Prototype device in NC Cancer Hospital

[Image]

https://clinicaltrials.gov/ct2/show/NCT01773850

Stationary DBT (s-DBT) System

System developed by retrofitting CNT linear source array to Hologic Selenia Dimensions system

- 31 x-ray focal spots
- 30° angular span
- 40 kVp
- Dose matched to conventional DBT systems
- 2.6 to 4.5 second imaging time
- Images reconstructed on RTT workstation

Comparison with commercial systems

<table>
<thead>
<tr>
<th></th>
<th>s-DBT</th>
<th>Hologic</th>
<th>GE</th>
<th>Siemens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan angle (degrees)</td>
<td>Up to 30 (40°)</td>
<td>15</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Acquisition time (sec)</td>
<td>2.5-4.5 (1.5 – 3.5°)</td>
<td>4</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td># of projection images</td>
<td>Up to 31</td>
<td>15</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Scan motion</td>
<td>Stationary</td>
<td>Continuous</td>
<td>Step and shoot</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

* 2nd generation s-DBT tube
Improved System Resolution

Higher Z-axis resolution

Comparison of ACF for Different Angular Spacing

30% improvement in system resolution

Irregular Speculated mass

2D FFDM RMLO

2D DBT RMLO

Tumor extension to skin is not visible on conventional imaging

LMO view
Dental Imaging: Unmet Clinical Needs

2D Intraoral Panoramic CBCT

Low sensitivity
• Caries: most common dental conditions, sensitivity < 50%
• Root fracture: early detection is difficult
• CT does not improve diagnosis accuracy

Prior Works on Dental Tomosynthesis

• Webber, et al. invented Tuned Aperture Computed Tomography (TACT)
 – Fiducial marker
 – Manual translation of a conventional dental x-ray tube
 – Significant improvement in the diagnostic accuracy for fractures, periodontal diseases
 – Results on caries are inconclusive

• TACT is not used clinically
 – Long imaging time
 – Require fiducial marker
Intraoral Tomosynthesis with CNT X-Ray

- Linear CNT x-ray source array @ 70kVp x 7mA (clinical standard setting)
- Standard intraoral sensor, 35.52mm x 26.64mm (1920 x 1440 pixels, 18.5µm x 18.5µm each).
- Total dose from a tomo scan is the same as one 2D x-ray (PSP detector)
- Iterative reconstruction

Phantom Imaging: 3D vs 2D

Increased visualization of dental anatomy, caries, and tooth fractures compared to standard 2D image

Reader Study

Objective: Compare 3D intraoral with clinical 2D x-ray for caries detection
Specimen: Extracted human teeth
Ground truth: Micro-CT
Observers: 8 experienced dentists from UNC Dentistry
Conclusion: 36% increase in sensitivity for caries detection
Ongoing Patient Imaging Study

Objective: Conventional Bite Wing Radiography vs 3D Intraoral

100 patients from UNC Dental Clinic.

(https://clinicaltrials.gov/ct2/show/NCT02873585)

Disclosures

Research was supported by grants from NCI, NIDCR, NIH CTSA through NCTraCS, UCRF, Xintek, and Carestream Health.

Otto Zhou has equity ownership and serves on the board of directors of Xintek, Inc., to which the technologies used or evaluated in this project have been or will be licensed. Some of the authors are inventors of issued/pending patents related to these technologies. All activities have been approved by institutional COI committees.