PET Physics and Instrumentation Tim Turkington, PhD Duke University

Positron Decay

${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z-1}Y_{N}$	$_{\rm V+1}$ + e ⁺ + v
e.g., ¹⁸ F \rightarrow	¹⁸ O + e ⁺ + ν
Nuclide	half-life
C-11	20.3 min
N-13	10 min
O-15	124 sec
F-18	110 min
<i>Rb-82</i>	75 sec
Ga-68	68 min

Positron Annihilation

Coincidence Event

Projections

Scattered Coincidence Event

Random Coincidence Event

Correcting Background; Noise Equivalent Counts

$$\begin{split} P_{prompts} &= T_{trues} + S_{scatter} + R_{randoms} \\ T' &= P - S' - R' \quad (Estimation of true events by subtracting S and R estimates) \\ \langle T' \rangle &= \langle P \rangle + \langle S' \rangle + \langle R' \rangle = P + \begin{vmatrix} 0 \\ R \end{vmatrix} \geq P \geq T \qquad (Variance propagation and Poisson properties. 0 ys. R depends on randoms correction method.) \\ SNR &\equiv \frac{T'}{\sqrt{\langle T' \rangle}} \approx \frac{T}{\sqrt{P + \begin{vmatrix} 0 \\ R \end{vmatrix}}; NEC = \frac{T^2}{P + \begin{vmatrix} 0 \\ R \end{vmatrix}} = \frac{T}{(1 + S / T + (2?)R / T)} \end{split}$$

S and R refer to scattered and random events on LORs that subtend the imaged object.

More background \rightarrow more statistical image noise.

NEC Examples

$$NEC = \frac{T}{\left(1 + S/T + R/T\right)}$$

Prompts	Trues	Scatter	SF	NEC
100	100	0	0	100
200	100	100	0.5	50
400	200	200	0.5	100

PET Design Goal

- · Highest possible sensitivity
- Lowest possible scatter and random fractions.
- Maximize NECR

Image Noise and Lesion Detection

3D Sensitivity vs. axial FOV

GE Discovery IQ

The influence of background

What is SNR of measurement of counts from A? Detectors measure counts $C_A + C_B$. S.D. of measurement is $\sqrt{C_A + C_B}$ SNR = $C_A / \sqrt{C_A + C_B}$

The influence of even more background

Magical new detectors

Where this radioactivity could give a count:

All of the locations that could give counts in this LOR:

All of the locations that could give counts from this body on this LOR:

All of the locations that could give counts on this LOR if we have TOF information:

D = diameter of body along line of response d = time-of-flight resolution

80 s

240 s

The TOF measurement leads to reduction in background, thereby improving count statistics by $\sim D/d$

Image Quality vs. Size

Patient Size

Intrinsic Spatial Resolution Limits

 positron range Depends on nuclide

• opening angle (Not exactly 180 degrees)

detector size

block effect

• depth of interaction

 $R_{sys} = \sqrt{R_{det}^{2} + R_{acol}^{2} + R_{range}^{2} + b^{2}}$

 R_{det} = resolution of detectors ($\leq d$) R_{acol} = resolution from photon acollinearity (=0.0022*D*) R_{range} = resolution from positron

range b = block effect

Currently ~4-5 mm FWHM -- point source response - ramp filter only This is NOT the smallest detectable lesion size!!!

Example Block Detectors

Standard Detector 6.4 mm x 6.4 mm 64 crystals/block

HI-REZ Detector 4.0 mm x 4.0 mm 169 crystals/block

3 x 2 unit of block detectors

PET Ring with Block Detectors

Depth of Interaction Uncertainty

- High stopping power helps: Interactions more likely in front of detector
- Some high resolution systems sacrifice sensitivity by shortening detectors (to mitigate DOI effects.)
- Some systems (HRRT) use two layers of detectors to lessen effect. Others propose a measurement of the DOI.

Attenuated Event

Attenuation losses - PET and SPECT

Events surviving attenuation in cylinder

PET Design Goals

Maximize NEC by maximizing sensitivity (Trues/s/activity) while minimizing background (S/T and R/T)

$$NEC = \frac{T^2}{P} = \frac{T}{(1 + S/T + (2?)R/T)}$$

- · Good intrinsic resolution without compromising sensitivity
- Provide accurate corrections for attenuation, scatter, randoms, deadtime, normalization (uniformity), ...
- · Good TOF without compromising sensitivity (too much)
- · Stability, service, low cost

Scint.	ρ (g/cm3)	Eff. Z	Hygro- scopic?	Decay (ns)	light out (relative)	∆E/E
Nal(TI)	3.67	51	Yes	230	100	10%*
LSO	7.4	65	No	40	75	15%*
GSO	6.71	59	No	60	30	14%*
BGO	7.13	75	No	300	15	25-17%*
BaF2	4.88	53	No	0.8	12	NG
CsF	4.64	53	Very	4	5	NG

Some Available Scintillators

sodium iodide (thallium doped) lutetium oxyorthosilicate gadolinium oxyorthosilicate bismuth germanate * depends on detector configuration, quality of material. No standard way to measure.

Melcher, J Nucl Med, 41:1051-1055

Image Reconstruction

Image reconstruction: $\lambda = p^{-1}(m_i - b_i)$ (What is p^{-1} ?)

Maximum Likelihood Expectation Maximization (ML-

Shepp LA, Vardi Y., IEEE Trans Med Imag 1:113-121, 1982. Lange K, Carson R., J Comput Assist Tomo 8:306-316, 1984.

 $\lambda_j^{(n)}$ is the estimated activity in voxel *j* at iteration *n*.

Extended Distribution Example

Ordered Subsets Expectation Maximization (OS-EM)

Hudson HM, Larkin RS . IEEE Trans Med Imag 13:601-609, 1994.

$$\lambda_{j}^{(n+1)} = \frac{1}{\sum_{i=1}^{nbin}} \sum_{i=1}^{nbin} \frac{p_{ij}\lambda_{j}^{(n)}}{b_{i} + \sum_{k=1}^{nvox} p_{ik}\lambda_{k}^{(n)}} m_{i}$$

Instead of processing all projection for each image update, projections are divided into subsets, and the image is updated after processing each subset.

TOF vs NTOF : Hot Spheres

Final Comments

- Multiple factors (sometimes competing) lead to good PET design.
- The ideal system would have high sensitivity, low background fractions, excellent TOF performance, high spatial resolution, and low cost.
- It is important to have image reconstruction that makes the best use of the raw data the scanner provides.