# Solid State LightBurst New PET Technology – GE PET/CT and PET/MR

Osama Mawlawi PhD. Dept. of Imaging Physics MD Anderson Cancer Center





#### Disclosures

SIEMENS Research grant

• GE research grant

#### Discovery MI

- LYSO
  TOF capable
  TOF capable
  JBS fs (f cm positioning error)
  PSF
  Regularized reconstruction
  SSFM detectors
  Modular 10, 15, 20, 25 cm
  7 Cm transverse FOV
  Water cooled



#### New GE Signa PET/MR

#### • PET

- LYSO
- TOF capable
- ~ 385 ps (6 cm positioning error)
- PSF
- Regularized reconstruction
- SSPM
- 25 cm axial FOV
- 60 cm transverse FOV

#### • 3 T MRI (MR750W)

60 cm bore w/ 50cm FOV
 Multi-drive XMIT with 32 ch + 33 T/m & 120 T/m/s gradient strength





# **Time-of-Flight Acquisition:**



| $\Delta x = \frac{\Delta t}{2}c$ |                            |            | $SNR_{TOF} \cong \sqrt{\frac{D}{\Delta x}} \cdot SNR_{conv}$ |                                      |  |
|----------------------------------|----------------------------|------------|--------------------------------------------------------------|--------------------------------------|--|
|                                  | Time<br>Resolution<br>(ns) | Δx<br>(cm) | SNR<br>improvement<br>(20 cm object)                         | SNR<br>improvement<br>(40 cm object) |  |
|                                  | 0.1                        | 1.5        | 3.7                                                          | 5.2                                  |  |
|                                  | 0.3                        | 4.5        | 2.1                                                          | 3.0                                  |  |
|                                  | 0.5                        | 7.5        | 1.6                                                          | 2.3                                  |  |
|                                  | 1.2                        | 18.0       | 1.1                                                          | 1.5                                  |  |
|                                  |                            |            |                                                              |                                      |  |

Mawlawi MDACC

# Resolution Recovery







Mawlawi MDACC





#### Regularized Reconstruction Technology





# **Regularized Reconsturction**



Achieve full convergence at low image noise

Adapted from GE HealthCare

#### Regularized Reconstruction = Q-Clear



77 years male with follicular lymphoma, 80 kg, 25 BMI, 9.4 mCi, 60 min post injection

#### Regularized Reconstruction = Q-Clear



Left to right: PET MIP images of a patient (BMI=26) with algorithms A, B, C, and D. Arrows highlighting lesion conspicuity (red). All images are displayed with the same WW/WL settings.

#### Detector block



4x3 "optical block." The light from those crystals is directed towards a single SIPM chip. What's hard to see in the figure is that the chip is a hex device, with 3x2 operationally independent devices on it. So the light encoding is 12 crystals to SIPM channels, picture shows twelve blocks, or an assembly of 16x9 crystals, that is nominally 64x48 mm in size.

PET/(MR) PET Detector



36)

# **Resolution Center Position**









#### Resolution Quarter FOV Position





|      | ۵×   | ۵۷   |
|------|------|------|
| PS#1 | -0.7 | -0.7 |
| PS#2 | 0.9  | -1.0 |
| PS#3 | -0.5 | 1.1  |

|      | 6Z<br>Str Center | AZ<br>for Quarte |
|------|------------------|------------------|
| Sel  | -62.6            | -0.0             |
| P5#2 | -61.1            | 1.4              |
| P5#3 | -63.1            | -0.5             |



# **Resolution Results**





# Sensitivity

| - |  |  |
|---|--|--|

# Sensitivity Center FOV 1<sup>st</sup> Run







# Sensitivity 10 cm 1<sup>st</sup> Run







# Sensitivity Center FOV 2nd Run





# Sensitivity 10 cm 2<sup>nd</sup> Run





# Sensitivity Center FOV 3<sup>rd</sup> Run





# Sensitivity 10 cm 3<sup>rd</sup> Run





# Sensitivity Center FOV 4<sup>th</sup> Run





# Sensitivity 10 cm 4<sup>th</sup> Run





#### 

# Count rate @ 17 kBq/cc



# Count rate @ 30 kBq/cc



#### Scatter Fraction





#### PET NEMA (NU 2-2007) measurements – MR on and off

| onsitiuitu''       | 13.5 cos/kPa         |
|--------------------|----------------------|
| sensitivity        | 13.3 cps/kbd         |
| iming Resolution   | 385 psec             |
| Sensitivity/mm''   | 0.068 cps/kBq*mm     |
| icatter fraction'' | 41%                  |
| linical NECR"      | 53 kcps @ 2.4 kBq/ml |
| Peak NECR''        | 180 kcps @ 20 kBq/ml |
| Coincidence window | 4.9 ns               |
| inergy threshold   | 425 KeV              |

Levin et al. "Performance of a high sensitivity time-of-flight PET ring operating "t-troresonate is standard deviation simultaneously within a 31 MR system". PSMR Conterence, Kos, Greece 2014 of three measurements at different sites Results from a prototype system.

cer Cei













# NEMA IEC Body Phantom





Figure 2-1: Cross Section of NEMA Image Quality Phantom (Demonstrating Proper Orientation of Hot and Cold Spheres)

#### IQ Run1





# IQ Run2



#### UP TO 26 CM AXIAL FIELD-OF-VIEW



















# Thank You



16