Ŷ

MR image processing, registration & planning for extra-cranial radiotherapy

Jing Cai, PhD

2017 AAPM 59th Annual Meeting, Denver, CO

Disclosure

I have received research funding from NIH and Varian Medical System.

Learning Objectives

- Outline the common clinical practice of MR applications in extra-cranial radiotherapy.
- Discuss key challenges in the implementation of MRI in extra-cranial radiotherapy.
- Provide overviews of efforts to address these challenges.

Tumor tissue boundaries clearly defined in T2-w MRI.

Pre- and post administration of Feridex contrast on T2*w-MRI of HCC. Cher T, et al, Appl Radiol. 2010;39(11):26-41.

Pancreas

MRI shows the cystic nature of a pancreatic lesion and it's internal structure. The MRI shows a large cyst with dependent internal debris.

Prostate

Definition of the prostate gland boundaries and the adjacent structures is better visualized on MRI than with CT.

V S Koon, BJR September 1, 2006 vol. 79 n. Special Issue 1S2-S1

Prostate: DWI

•

٠

•

Metastatic small cell prostate cancer after resection of the prostate.

Prostate replaced by tumor with extension outside the prostate.

Tumor invades the bladder and nearby bone.

Lawrence E, Nature Reviews Urology 9, 94-101 (February 2012)

Cai, et al, Radiotherapy and Oncology, 2007

Lung: Cine MRI

Cine MRI (~5 frames/sec) for tumor motion measurement and monitoring

MR/CT Registration

Manual Rigid Registration

- Based on interactive visual inspection
- Anatomy-based, fiducial-based, coordinate-based
- Large intra- and inter-observer variability

Automatic Rigid Registration

- Based on mutual information
- Affected by anatomy changes between scans
- Need visual verification and adjustment

Deformable Registration

- Need comprehensive evaluation

MR/CT Registration Accuracy

Various MR/CT Registration Methods

TABLE I. Reported MRI to CT coregistration errors for various used coregistration methods.						
Author	Year	Method	Anatomical site	Reported coregistration error (mm)		
Alpert et al. (Ref. 13)	1990	Matching moments method	Brain	1.0		
Turkington et al. (Ref. 14)	1993	Maximum gradient technique	Brain	2		
Van Herk and Kooy (Ref. 15)	1994	Contours chamfer matching	Brain	1.0		
Kagawa et al. (Ref. 8)	1997	3 anatomical landmarks	Prostate	0.9 (±0.6)		
Sannazzari et al. (Ref. 16)	2002	9-15 anatomical landmarks	Prostate	1.5		
Krempien et al. (Ref. 10)	2003	Mutual information	H&N, GYN	1.8 (±0.9)		
Brock et al. (Ref. 12)	2010	Various deformable	Various	0.4-6.2		

Devic S, et al, Medical Physics, 39 (11), 2012

MR/CT Registration Challenges

Image Related

- MR artifacts (ghost, chemical shift, etc.)
- Spatial accuracy (distortion), spatial resolution
- Various image contrasts

Radiation Therapy Related

- Patient's anatomy change between scans
- Differences in immortalization devices, breathing status
- Use of fiducial markers/applicators

Human Related

- Inter- and intra-subject variations
- Lack of knowledge or training

MRI Artifacts

MRI	[G	ec	om	et	ric Disto	rti	on)	
2D and 3D corre 2D applied, 3D n 2D and 3D corre 14	ctions a tot appli- ctions n	pplied ed ot applie	ed		2D and 3D corre- 2D applied, 3D n 2D and 3D corre- 2D and 3D corre-	ctions a ot appli ctions r	pplied ed iot applie	ed	,
12 10 Distortion		/	/	/	12 Through- 10 Distort	plane ion		/	
50 100 Distance to	150 the iso	200 center	250 (mm)	>250	So 100 Distance t	150 o the is	200 socente	250 er (mm)	>250
Distance to the isocenter (mm)	100	150	200	250	Distance to the isocenter (mm)	100	150	200	250
Corr Mean Distortion (mm)	Corr Mean Distortion (mm) 0.33 0.35 0.51 1.95			Corr Mean Distortion (mm)	0.35	0.51	0.72	1.77	
Τοι	feh T-e	t al. Ma	ignetic	Resona	nce Imaging 34 (2016) 645	5-653			

- Fiducial makers (SBRT), immobalization Full/empty rectum/bladder
- •

•

		Ap	pl	ica	toi	r in	Ph	an	to	n		
\bigcirc	6	2	C	0	0	0	0	0	6	>	0	0
											:	
				2					=	5		

Tumor Contrast Variation

Challenge: large inter-patient tumor contrast variation
 Strategy: fuse different contrast MR images to enhance tumor contrast

4D-MRI: Volume Delineation of Moving Target in Abdomen

4D-MRI only based treatment planning and motion management for mobile abdominal cancers

Two major challenges:

MRI-based dose calculationTarget volume determination

Dose error increases as distortion increase.

When distortion < 2 mm, dose error < 1.0 Gy or 1% in all studied metrics.

Fast ITV Determination

Sequential T2-w MRI

Repeated acquisition of T2-w MR images using HASTE sequence
Generate MIP using all acquired images after each volume acquisition

Fast ITV Determination

Slice-stacking of sequentially acquired T2-w MR images can be used for faster (\sim 2 min) determination of ITV as compared to 4D-MRI (\sim 6 min)

Super Quality Lung MRI

Curtsey of Dr. G. Wilson Miller, University of Virginia

Summary

- The use of MRI in RT treatment planning for excranial tumors is rapidly increasing at nearly all body sites.
- Unique advantages of MRI (versatile contrast, fast imaging, flexible plane, functional imaging, etc.) provides complimentary information for CT-based treatment planning.
- MR/CT coregistration, MR geometric uncertainties, imaging speed, and contrast variations still remain challenging for RT applications.
- A number of new MRI techniques have been developed or under development to overcome current limitations.

Acknowledgements

Duke Radiation Oncology

Fang-Fang Yin, PhD Mark Oldham, PhD Jim Chang, PhD Lei Ren, PhD Brian Czito, MD Manisha Palta, MD Chris Kelsey, MD Rachel Blitzblau, MD

Duke Radiology

Nan-kuei Chen, PhD Paul Segars, PhD Mustafa Bashir, MD Michael Zalutsky, PhD MDACC Jihong Wang, PhD

Yingli Yang, PhD Siemens

Xiaodong Zhong, PhD Brian Dale, PhD

UNC-CH Radiology Dinggang Shen, PhD Guorong Wu, PhD

PHILIPS

Duke Department of Radiation Oncology