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We Live in An Ever-Growing Data World

• Over 90% of all the data in the world was created in the past 2 years
• Every 2 days we created as much information as we did from the 

beginning of time until 2003
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Risky? Maybe. But also a good opportunity!
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Target Knows and Predicts
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Target Knows and Predicts

• Each customer gets an ID, tied to credit card, name, email address, 
purchase history,  and any demographic information

• Analyze historical buying data for all the ladies who have signed up 
for Target baby registries in the past

• Look for time-purchasing patterns

• Predict what the consumers most likely to buy next time

• Mail out coupons that are most likely to make consumers happy



S L I D E  7

Target Knows and Predicts

You are what you buy
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Big Data Characteristics

• Four V’s: Volume, Variety, Velocity, and Veracity

• Volume: a large volume of data collected and stored continuously

• Variety: structured data in traditional databases, and unstructured 
text documents, emails, video, audio, notes and financial transactions

• Velocity: data is streaming in at unprecedented speed

• Veracity: bias, noise and abnormality in data

• What is important in big data analysis is correlation not causality
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Machine Learning 101

• Artificial Intelligence has exploded since 2015
– GPUs make parallel processing ever faster, cheaper, and more powerful
– Big Data pouring in: images, text, transactions, mapping data

• Deep learning seeks to model data, decipher correlations and make decisions
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Machine Learning Algorithms

• Information-based machine learning
– Decision tree
– Random forest

• Similarity-based machine learning
– K nearest neighbor (KNN)

• Probability-based machine learning
– Naïve Bayes
– Markov chain Monte Carlo

• Error-based machine learning
– Logistic regression
– Support vector machines (SVM)
– Artificial neural networks (ANN)
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Machine Learning Algorithms

• Supervised machine learning
– Decision tree
– Random forest
– Logistic regression
– K nearest neighbor
– Artificial neural networks

• Unsupervised machine learning
– Apriori algorithm
– K-means

• Reinforcement learning
– Markov Decision Process
– Deep reinforcement learning (e.g., AlphaGo)
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Deep Blue vs Kasparov

• IBM Deep Blue used a brute force search approach to beat Kasparov in 1997
• Deep Blue goes through all the possible moves to a depth of 6 to 20 moves
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AlphaGo vs Lee Sedol & Ke Jie

• There are 10170 possible positions in Go, too many to try a brute force search
• Google AlphaGo uses deep reinforcement learning to teach the machine to 

self-learn from its own moves, improve, and make better moves
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Big Data Resource in Cancer and Biomedical Research

• National Cancer Database (NCDB): https://www.facs.org/quality-programs/cancer/ncdb

• NIH Big Data to Knowledge (BD2K): https://bd2kccc.org/

• NIH Data Sharing: https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
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Big Data in Radiation Oncology

Huser and Cimino, Int J Radiol Oncol Biol Phys 95(3), 890-894, 2016
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Tap Big Data in Radiation Oncology

Rosenstein et al, Int J Radiol Oncol Biol Phys 2016
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The Question We Try to Answer

• Can we achieve individualized cancer risk prediction via machine 
learning with big health data?
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CDC National Health Interview Survey

• Publically available CDC data from 
1997-2015

• Total observations: 555,183
• Variables of interest: 

Age, Sex, Race, BMI, Smoking, 
Asthma, Diabetes, Strokes, 
Hypertension, Family History, 
Alcohol consumption, Hispanic 
ethnicity, Cardiovascular Disease, 
Physical Exercise, Chronic 
Obstructive Pulmonary Disease 
(COPD)

Demographics of the Data Prostate Cancer Non-Cancer
Average Age 68.94 45.19
Average BMI 27.83 27.56
Percentage That Have Ever Smoked 63.10% 49.02%
Percentage That Have COPD 4.69% 1.74%
Percentage That Have Asthma 8.97% 9.35%
Percentage That Have Diabetes 17.88% 7.89%
Percentage That Have Ever Had a 
Stroke

7.25% 2.39%

Percentage with Hypertension 60.31% 26.66%
Average Heart Disease Score 13.51% 4.41%
Percentage White 77.24% 79.01%
Percentage African American 19.61% 13.45%
Percentage Native American/Alaska 
Native

0.48% 0.87%

Percentage Asian 1.72% 5.16%
Percentage Multiracial 0.95% 1.51%
Percentage With Hispanic Ethnicity 6.89% 16.93%
Percentage That Perform Vigorous 
Exercise at Least Once per Week

28.05% 45.10%

Roffman et al. Scientific Reports, 2017 (under review)
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Multi-Parameterized Deep Neural Network

Roffman et al. Scientific Reports, 2017 (under review)
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Multi-Parameterized DNN for Prostate Cancer Prediction

• Sensitivity (true positive rate, or probability of detection) measures the 
proportion of positives that are correctly identified as positive, = TP/P

• Specificity (true negative rate) measures the proportion of negatives 
that are correctly identified as negative, = TN/N

• Precision or positive predictive value (PPV), measures how precise is 
the prediction, = TP/(TP+FP)

• Since the data under-samples prostate cancer, a Bayesian formula is 
used to calculate the PPV: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
Sensitivity ∗ Prevalence

(Sensitivity ∗ Prevalence + (1 − Specificity ) ∗ (1 − Prevalence))
  

Roffman et al. Scientific Reports, 2017 (under review)



S L I D E  21

Multi-Parameterized DNN for Prostate Cancer Prediction

DNN training
- Sensitivity: 45%
- Specificity: 91%
- PPV: 46%

DNN validation
- Sensitivity: 45%
- Specificity: 91%
- PPV: 44%

PSA (ACS)
- Sensitivity: 21%
- Specificity: 91%
- PPV: 30%

Roffman et al. Scientific Reports, 2017 (under review)
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Multi-Parameterized DNN for Prostate Cancer Prediction

Roffman et al. Scientific Reports, 2017 (under review)
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Multi-Parameterized DNN for Prostate Cancer Prediction
Tests Requirements Sensitivity Specificity AUC
PSA22,25 Blood work 95%* 17.2%-19.2%* 0.53-0.549
PHI25 Blood work 95%* 36%* 0.815
4- kallikrein score26,27 Blood work, prior biopsy, DRE N/A N/A 0.82
SelectMDx23 Blood work, DRE, urine sample, 

biomarkers
N/A N/A 0.86

Clinical Baseline Model23,30 Blood work, family history, DRE, prior 
biopsy

N/A N/A 0.87

mpMRI34,35,36 MRI scan 58%-96% 
(optimal 95%)

23%-87% (optimal 
84%)

N/A

Stockholm-333 Blood work, protein biomarkers, genetic 
markers, DRE, family history, prior 
biopsy

N/A N/A 0.78

22-phage-peptide detector40 Serum and unique equipment to conduct 
the test

81.6% 88.2% 0.93

Radiomics: 5 Haralick 
texture38,39,41

Plethora of imaging data 86% 88% 0.54-0.66

Prostataclass ANN31,32 Blood work, DRE, prostate volume 
measurement

95% 22%-41% 
(dependent on the 
PSA value)

0.84

Our ANN Health informatics commonly available 
in electronic medical records

95.08% 67.35% 0.8756

• No blood work
• No biopsy
• No imaging
• No genomic data
• No DRE

• Non-invasive
• Cost-effective
• Easy-to-implement

Roffman et al. Scientific Reports, 2017 (under review)
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Conclusions

• Big data in radiation oncology is a gold mine waiting to be exploited

• Open data access is the bottleneck to big data applications

• It is crucial to identify which machine learning algorithm is best suited 
for your specific problem

• It is possible to predict prostate cancer risk for individual with deep 
neural network based solely on personal health informatics

• There are endless opportunities in machine learning with big health data 
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You Are Your Data, Your Data is You
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In A Digital World






S L I D E  27

Acknowledgement

NIH/NIBIB: 1R01EB022589-01

Zhe Chen, Ph.D. David Roffman, Ph.D.
James Duncan, Ph.D. (Radiology) Liz Guo, MPH
Kenneth Roberts, M.D. Issa Ali, B.S.
James Yu, M.D. Ying Liang, Ph.D.
Yawei Zhang, Ph.D. (Public Health) Wazir Muhammad, Ph.D.
Steven Ma, Ph.D. (Biostatistics) Gregory Hart, Ph.D.



S L I D E  28

Thank You!
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