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We Live in An Ever-Growing Data World

e Over 90% of all the data in the world was created in the past 2 years

e Every 2 days we created as much information as we did from the
beginning of time until 2003
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Risky? Maybe. But also a good opportunity!
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Target Knows and Predicts

TARGET



Target Knows and Predicts

e Each customer gets an ID, tied to credit card, name, email address,
purchase history, and any demographic information

e Analyze historical buying data for all the ladies who have signed up
for Target baby registries in the past

e Look for time-purchasing patterns
e Predict what the consumers most likely to buy next time

e Mail out coupons that are most likely to make consumers happy
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Target Knows and Predicts

—

You are what you buy
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Big Data Characteristics

 Four V’s: Volume, Variety, Velocity, and Veracity
« Volume: a large volume of data collected and stored continuously

e Varliety: structured data in traditional databases, and unstructured
text documents, emails, video, audio, notes and financial transactions

 Velocity: data is streaming in at unprecedented speed
e Veracity: bias, noise and abnormality in data

« What is important in big data analysis is correlation not causality
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Machine Learning 101

« Artificial Intelligence has exploded since 2015
— GPUs make parallel processing ever faster, cheaper, and more powerful
— Big Data pouring in: images, text, transactions, mapping data

e Deep learning seeks to model data, decipher correlations and make decisions

il N \1CHINE
LEARNING
LEARNING
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Machine Learning Algorithms

Information-based machine learning
— Decision tree
— Random forest

Similarity-based machine learning
— K nearest neighbor (KNN)

Probability-based machine learning
— Nalive Bayes

— Markov chain Monte Carlo
Error-based machine learning

— Logistic regression

— Support vector machines (SVM)

— Atrtificial neural networks (ANN)
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Machine Learning Algorithms

e Supervised machine learning
— Decision tree
— Random forest
— Logistic regression
— K nearest neighbor
— Artificial neural networks

e Unsupervised machine learning
— Apriori algorithm
— K-means

e Reinforcement learning

— Markov Decision Process
— Deep reinforcement learning (e.g., AlphaGo)
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Deep Blue vs Kasparov

e |IBM Deep Blue used a brute force search approach to beat Kasparov in 1997
e Deep Blue goes through all the possible moves to a depth of 6 to 20 moves
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AlphaGo vs Lee Sedol & Ke Jie

e There are 1070 possible positions in Go, too many to try a brute force search

e Google AlphaGo uses deep reinforcement learning to teach the machine to

self-learn from its own moves, improve, and make better moves
i~ 0
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Big Data Resource in Cancer and Biomedical Research

e National Cancer Database (NCDB): https://www.facs.org/quality-programs/cancer/ncdb
 NIH Big Data to Knowledge (BD2K): https://bd2kccc.org/
 NIH Data Sharing: https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.htmi
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NIH Data Sharing Repositories
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This table lists NIH-supported data repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and
others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about
biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that
you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional
information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories. Are we missing a data

sharing repository? Contact us.

Show entries

Search: |

ic - Repository Name Repository Description Data Submission Policy Access to Data
NCI Cancer Nanotechnology caNanoLab is a data sharing portal designed 1o facilitate information How to submit your data to How to access caNanoLab
Laboratory (caNanolab) sharing in the biomedical nanotechnology research community to caNanolab
expedite and validate the use of nanotechnology in biomedicine
caNanaLab provides support for the annotation of nanomaterials with
characterizations resulting from physico-chemical, in vitro, and in vivo
assays and the sharing of these characterizations and associated
nanatechnology protocols in a secure fashion.
NCI The Cancer Imaging The image data in The Cancer Imaging Archive (TCIA) is organized into How to submit data to TCIA How to access TCIA data
Archive (TCIA) purpose-built collections of subjects. The subjects typically have a
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Big Data in Radiation Oncology

Table 1 Sizes of genomic data compared to some existing clinical data domains

Data type Data elements Single patient (average) Cohort of 1 million patients

Clinical reports Text 10 MB 10 TB
Laboratory results Value, units, flag 0.3 MB 0.3TB
Administrative plus EHR data Dx, Proc, Rx 2 MB 2TB

Exome genomic data (variants) (VCF) Position, type, base(s) 125 MB 125 TB

Imaging data Multiple image formats 421.9 MB* 4219 TB*

Total 559.2 MB 559.2 TB

Raw exome genomic data (BAM) Position, base, quality 5.7 GB J.1 PB

Grand total 6.3 GB 6.3 PB

Abbreviations: BAM = binary alignment/map; Dx = diagnosis; EB = exabyte (10'®); EHR = electronic health record; GB = gigabyte (10%);
MB = megabyte (10%; PB = petabyte (10"°): Proc = procedure; Rx = prescription; TB = terabyte (10"%); VCF = variant call format.

* Imaging data estimate does not represent an average patient but is based on the cancer patient cohort in the Cancer Imaging Archive (13.5 TB of
image data for approximately 32,000 cancer patients [data as of April 2015]) (4).
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Tap Big Data in Radiation Oncology
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The Question We Try to Answer

e Can we achieve individualized cancer risk prediction via machine
learning with big health data?
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CDC National Health Interview Survey

Publically available CDC data from
1997-2015

Total observations: 555,183
Variables of interest:

Age, Sex, Race, BMI, Smoking,
Asthma, Diabetes, Strokes,
Hypertension, Family History,
Alcohol consumption, Hispanic
ethnicity, Cardiovascular Disease,
Physical Exercise, Chronic
Obstructive Pulmonary Disease
(COPD)
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Demog raphics of the Data Prostate Cancer Non-Cancer
Average Age 68.94 45.19
Average BMI 27.83 27.56
Percentage That Have Ever Smoked 63.10% 49.02%
Percentage That Have COPD 4.69% 1.74%
Percentage That Have Asthma 8.97% 9.35%
Percentage That Have Diabetes 17.88% 7.89%
Percentage That Have Ever Had a 7.25% 2.39%
Stroke
Percentage with Hypertension 60.31% 26.66%
Average Heart Disease Score 13.51% 4.41%
Percentage White 77.24% 79.01%
Percentage African American 19.61% 13.45%
Percentage Native American/Alaska 0.48% 0.87%
Native
Percentage Asian 1.72% 5.16%
Percentage Multiracial 0.95% 1.51%
Percentage With Hispanic Ethnicity 6.89% 16.93%
Percentage That Perform Vigorous 28.05% 45.10%
Exercise at Least Once per Week
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Multi-Parameterized Deep Neural Network
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Multi-Parameterized DNN for Prostate Cancer Prediction

e Sensitivity (true positive rate, or probability of detection) measures the
proportion of positives that are correctly identified as positive, = TP/P

e Specificity (true negative rate) measures the proportion of negatives
that are correctly identified as negative, = TN/N

e Precision or positive predictive value (PPV), measures how precise is
the prediction, = TP/(TP+FP)

e Since the data under-samples prostate cancer, a Bayesian formula is
used to calculate the PPV:

Sensitivity * Prevalence

PPV =
(Sensitivity * Prevalence + (1 — Specificity ) * (1 — Prevalence))
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Multi-Parameterized DNN for Prostate Cancer Prediction

DNN training

DNN validation
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Roffman et al. Scientific Reports, 2017 (under review)

— PSA Specificity

PSA (ACS)
- Sensitivity: 21%
- Specificity: 91%
- PPV:30%

PSA PPV

— PSA Sensitivity

SLIDE 21



Multi-Parameterized DNN for Prostate Cancer Prediction
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Multi-Parameterized DNN for Prostate Cancer Prediction

“Tests Requirements Sensitivity Specificity AUC
PSA22.25 Blood work 95%" 17.2%-19.2%" 0.53-0.549
PHI%» Blood work 95%" 36%" 0.815
4- kallikrein score?6:27 Blood work, prior biopsy, DRE N/A N/A 0.82
SelectMDx?3 Blood work, DRE, urine sample, N/A N/A 0.86
biomarkers

Clinical Baseline Model?3:30 Blood work, family history, DRE, prior N/A N/A 0.87
biopsy

mpMR[34:35.36 MRI scan 58%-96% 23%-87% (optimal ~ N/A

(optimal 95%) 84%)

Stockholm-333 Blood work, protein biomarkers, genetic N/A N/A 0.78
markers, DRE, family history, prior
biopsy

22-phage-peptide detector4? Serum and unique equipment to conduct 81.6% 88.2% 0.93
the test

Radiomics: 5 Haralick Plethora of imaging data 86% 88% 0.54-0.66

texture38:39.41

Prostataclass ANN?31:32 Blood work, DRE, prostate volume 95% 22%-41% 0.84
measurement (dependent on the

PSA value)
Our ANN Health informatics commonly available 95.08% 67.35% 0.8756

in electronic medical records
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No blood work
No biopsy

No imaging

No genomic data
No DRE

Non-invasive
Cost-effective
Easy-to-implement
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Conclusions

e Big data in radiation oncology is a gold mine waiting to be exploited
e Open data access is the bottleneck to big data applications

e Itiscrucial to identify which machine learning algorithm is best suited
for your specific problem

e |tis possible to predict prostate cancer risk for individual with deep
neural network based solely on personal health informatics

e There are endless opportunities in machine learning with big health data
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You Are Your Data, Your Data iIs You
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In A Digital World
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