Predicting Cancer Risks Via Multi-Parametric Correlations

Jun Deng, PhD Professor Department of Therapeutic Radiology Yale University School of Medicine

August 1, 2017, Denver, CO, AAPM Annual Meeting

Yale school of medicine

No conflicts of interest to disclose

Contents

- Big data basics
- Machine learning 101
- Big data in radiation oncology and applications
- Prostate cancer risk prediction via deep neural network
- Conclusions
- Outlook

We Live in An Ever-Growing Data World

- Over 90% of all the data in the world was created in the past 2 years
- Every 2 days we created as much information as we did from the beginning of time until 2003

Risky? Maybe. But also a good opportunity!

Front-end: Usage of the information

Middle-end: Optimisation of the existing solutions

Back-end: Conception of new solutions Monitoring : control, home automation, security

Process: « Smart Cities », default and failure detection, etc.

Flow analysis, energy consumption, etc.

yright Nicolas Glady

Machine to Machine

<u>Wearable</u> technologies: virtual or augmented reality

Improvement of the experience: customer (marketing), sport or health, etc.

Behavior Analysis (geolocation, body indicators, etc.)

Social network: Facebook, Twitter, Amazon, etc.

Targeting: Marketing, Risk, Fraud, etc.

Emerging <u>needs</u> detection via text-mining

Human to Machine

Human to Human

Target Knows and Predicts

Target Knows and Predicts

- Each customer gets an ID, tied to credit card, name, email address, purchase history, and any demographic information
- Analyze historical buying data for all the ladies who have signed up for Target baby registries in the past
- Look for time-purchasing patterns
- Predict what the consumers most likely to buy next time
- Mail out coupons that are most likely to make consumers happy

Target Knows and Predicts

You are what you buy

Yale school of medicine

Big Data Characteristics

- Four V's: <u>V</u>olume, <u>V</u>ariety, <u>V</u>elocity, and <u>V</u>eracity
- **Volume**: a large volume of data collected and stored continuously
- **Variety**: structured data in traditional databases, and unstructured text documents, emails, video, audio, notes and financial transactions
- Velocity: data is streaming in at unprecedented speed
- Veracity: bias, noise and abnormality in data
- What is important in big data analysis is **correlation** not causality

Machine Learning 101

- Artificial Intelligence has exploded since 2015
 - GPUs make parallel processing ever faster, cheaper, and more powerful
 - Big Data pouring in: images, text, transactions, mapping data
- Deep learning seeks to model data, decipher correlations and make decisions

Machine Learning Algorithms

- Information-based machine learning
 - Decision tree
 - Random forest
- Similarity-based machine learning
 - K nearest neighbor (KNN)
- Probability-based machine learning
 - Naïve Bayes
 - Markov chain Monte Carlo
- Error-based machine learning
 - Logistic regression
 - Support vector machines (SVM)
 - Artificial neural networks (ANN)

Machine Learning Algorithms

- Supervised machine learning
 - Decision tree
 - Random forest
 - Logistic regression
 - K nearest neighbor
 - Artificial neural networks
- Unsupervised machine learning
 - Apriori algorithm
 - K-means
- Reinforcement learning
 - Markov Decision Process
 - Deep reinforcement learning (e.g., AlphaGo)

Deep Blue vs Kasparov

- IBM Deep Blue used a brute force search approach to beat Kasparov in 1997
- Deep Blue goes through all the possible moves to a depth of 6 to 20 moves

AlphaGo vs Lee Sedol & Ke Jie

- There are 10¹⁷⁰ possible positions in Go, too many to try a brute force search
- Google AlphaGo uses deep reinforcement learning to teach the machine to self-learn from its own moves, improve, and make better moves

Yale SCHOOL OF MEDI

Big Data Resource in Cancer and Biomedical Research

- National Cancer Database (NCDB): https://www.facs.org/quality-programs/cancer/ncdb
- NIH Big Data to Knowledge (BD2K): https://bd2kccc.org/
- NIH Data Sharing: https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html

NIH U.S. National Library of Medicine	9 Search				
Databases Find, Read, Learn Explore NLM Research at NLM NLM for You	NLM Customer Support 🛛 🗐 🔊 🗗 🎔 💽				
NIH Trans-NIH BioMedical Informatics Coordinating Committee (BMIC) BMIC Home CDE Resource Portal					

NIH Data Sharing Repositories

This table lists NIH-supported data repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories. Are we missing a data sharing repository? <u>Contact us</u>.

Show 50 v entries Search:							
		IC	•	Repository Name 🍦	Repository Description	Data Submission Policy	Access to Data
	NCI			<u>Cancer Nanotechnology</u> Laboratory (caNanoLab)	caNanol.ab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanol.ab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical, in vitro, and in vivo assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.	How to submit your data to caNanoLab	How to access caNanoLab data
	NCI			The Cancer Imaging Archive (TCIA)	The image data in The Cancer Imaging Archive (TCIA) is organized into purpose-built collections of subjects. The subjects typically have a	How to submit data to TCIA	How to access TCIA data

Big Data in Radiation Oncology

Data type	Data elements	Single patient (average)	Cohort of 1 million patients
Clinical reports	Text	10 MB	10 TB
Laboratory results	Value, units, flag	0.3 MB	0.3 TB
Administrative plus EHR data	Dx, Proc, Rx	2 MB	2 TB
Exome genomic data (variants) (VCF)	Position, type, base(s)	125 MB	125 TB
Imaging data	Multiple image formats	421.9 MB*	421.9 TB*
Total		559.2 MB	559.2 TB
Raw exome genomic data (BAM)	Position, base, quality	5.7 GB	5.7 PB
Grand total		6.3 GB	6.3 PB

Table 1 Sizes of genomic data compared to some existing clinical data domains

Abbreviations: BAM = binary alignment/map; Dx = diagnosis; $EB = exabyte (10^{18})$; EHR = electronic health record; $GB = gigabyte (10^9)$; $MB = megabyte (10^6)$; $PB = petabyte (10^{15})$; Proc = procedure; Rx = prescription; $TB = terabyte (10^{12})$; VCF = variant call format. * Imaging data estimate does not represent an average patient but is based on the cancer patient cohort in the Cancer Imaging Archive (13.5 TB of image data for approximately 32,000 cancer patients [data as of April 2015]) (4).

Tap Big Data in Radiation Oncology

The Question We Try to Answer

• Can we achieve individualized cancer risk prediction via machine learning with big health data?

CDC National Health Interview Survey

- Publically available CDC data from 1997-2015
- Total observations: 555,183
- Variables of interest:

Yale school of medicine

Age, Sex, Race, BMI, Smoking, Asthma, Diabetes, Strokes, Hypertension, Family History, Alcohol consumption, Hispanic ethnicity, Cardiovascular Disease, Physical Exercise, Chronic Obstructive Pulmonary Disease (COPD)

Demographics of the Data	Prostate Cancer	Non-Cancer
Average Age	68.94	45.19
Average BMI	27.83	27.56
Percentage That Have Ever Smoked	63.10%	49.02%
Percentage That Have COPD	4.69%	1.74%
Percentage That Have Asthma	8.97%	9.35%
Percentage That Have Diabetes	17.88%	7.89%
Percentage That Have Ever Had a	7.25%	2.39%
Stroke		
Percentage with Hypertension	60.31%	26.66%
Average Heart Disease Score	13.51%	4.41%
Percentage White	77.24%	79.01%
Percentage African American	19.61%	13.45%
Percentage Native American/Alaska	0.48%	0.87%
Native		
Percentage Asian	1.72%	5.16%
Percentage Multiracial	0.95%	1.51%
Percentage With Hispanic Ethnicity	6.89%	16.93%
Percentage That Perform Vigorous	28.05%	45.10%
Exercise at Least Once per Week		

Multi-Parameterized Deep Neural Network

Yale school of medicine

- Sensitivity (true positive rate, or probability of detection) measures the proportion of positives that are correctly identified as positive, = TP/P
- Specificity (true negative rate) measures the proportion of negatives that are correctly identified as negative, = TN/N
- Precision or positive predictive value (PPV), measures how precise is the prediction, = TP/(TP+FP)
- Since the data under-samples prostate cancer, a Bayesian formula is used to calculate the PPV:

 $PPV = \frac{\text{Sensitivity * Prevalence}}{(\text{Sensitivity * Prevalence} + (1 - \text{Specificity}) * (1 - \text{Prevalence}))}$

Yale school of medicine

Yale school of medicine

ests	Requirements	Sensitivity	Specificity	AUC
SA ^{22,25}	Blood work	95%*	17.2%-19.2%*	0.53-0.549
II ²⁵	Blood work	95%*	36%*	0.815
kallikrein score ^{26,27}	Blood work, prior biopsy, DRE	N/A	N/A	0.82
ctMDx ²³	Blood work, DRE, urine sample, biomarkers	N/A	N/A	0.86
al Baseline Model ^{23,30}	Blood work, family history, DRE, prior biopsy	N/A	N/A	0.87
RI ^{34,35,36}	MRI scan	58%-96% (optimal 95%)	23%-87% (optimal 84%)	N/A
holm-3 ³³	Blood work, protein biomarkers, genetic markers, DRE, family history, prior biopsy	N/A	N/A	0.78
age-peptide detector ⁴⁰	Serum and unique equipment to conduct the test	81.6%	88.2%	0.93
mics: 5 Haralick e ^{38,39,41}	Plethora of imaging data	86%	88%	0.54-0.66
ataclass ANN ^{31,32}	Blood work, DRE, prostate volume measurement	95%	22%-41% (dependent on the PSA value)	0.84
ANN	Health informatics commonly available in electronic medical records	95.08%	67.35%	0.8756

od work

- psy
- iging
- omic data
- E

- vasive
- fective
- o-implement

Yale school of medicine

Conclusions

- Big data in radiation oncology is a gold mine waiting to be exploited
- Open data access is the bottleneck to big data applications
- It is crucial to identify which machine learning algorithm is best suited for your specific problem
- It is possible to predict prostate cancer risk for individual with deep neural network based solely on personal health informatics
- There are endless opportunities in machine learning with big health data

You Are Your Data, Your Data is You

In A Digital World

Acknowledgement

NIH/NIBIB: 1R01EB022589-01

Zhe Chen, Ph.D. James Duncan, Ph.D. (Radiology) Kenneth Roberts, M.D. James Yu, M.D. Yawei Zhang, Ph.D. (Public Health) Steven Ma, Ph.D. (Biostatistics)

David Roffman, Ph.D. Liz Guo, MPH Issa Ali, B.S. Ying Liang, Ph.D. Wazir Muhammad, Ph.D. Gregory Hart, Ph.D.

Thank You!

BIG DATA IN RADIATION ONCOLOGY	About Submit Journals • Research frontiers Search for articles, people, events and more.	Topics Q. Login Register	
<u>Important Dates</u> Detailed Outline: February 2017 Draft Chapter: July 1, 2017	Research Topic Machine Learning with Radiation Oncology Big D	Like Comment 0 0 0 ata f ♥ 8. in < 0 1 0 0 1	
<i>Edited by</i> Jun Deng, PhD Associate Professor of Therapeutic Radiology	Overview Articles Authors Impact Comments	392	
Yale University School of Medicine 15 York Street, LL508-Smilow	About this Research Topic	Topic Editors	
+1-860-967-0072 jun.deng@yale.edu	Rediation oncology is uniquely positioned to harness the power of big data as vest amounts of data are generated at an unprecedented pace for individual patients in imaging studies and radiation treatments worldwide. The big data encountered in the radiotherapy	Jun Deng Yale University USA	
Lei Xing, PhD	clinic may include patient demographics stored in the electronic medical record (EMR) systems, plan settings and dose volumetric		
Professor and Director of Medical Physics Division	information of the tumors and normal tissues generated by	Issam El Naga 💿 Follow	
Department of Radiation Oncology	treatment planning systems (1PS), anatomical and functional information from diagnostic and therapeutic imaging modalities	University of Michigan	
Stanford University School of Medicine	(e.g., CT, PET, MRI and kVCBCT) stored in picture archiving and communication systems (PACS), as well as the genomics,	States of America	
875 Blake Wilbur Drive, Room G233, Stanford, CA 94305-5847	proteomics and metabolomics information derived from blood and	123 publications	
+1-650-498-7896 <u>lei@stanford.edu</u> Taylor & Francis Books, Inc.	oncology has not been fully exploited for the benefits of cancer patients due to a variety of technical hurdles and hardware limitations.	Lei Xing Stanford University Stanford, USA	