Clinical Implementation of Pencil Beam Scanning (PBS) Proton Therapy

Lei Dong, Ph.D., University of Pennsylvania X. Ronald Zhu, Ph.D., MD Anderson Cancer Center Mark Pankuch, Ph.D., Northwestern Medicine

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History*

AAPM Education Session July 31, 2017, Denver, CO

PENN RADIATION ONCOLOGY

Learning Objects

- □ Learn about essential steps for preparing and commissioning a PBS system (~Dr. Dong)
- Understand dose calculation algorithms and their current limitations (Dr. Zhu)
- Understand characteristics of PBS and IMPT (~ Dr. Pankuch)
- Suggest training needs & transition issues, differences in vendor implementations; share experience (Panel discussion)

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

2

Preparing for PBS Commissioning and QA

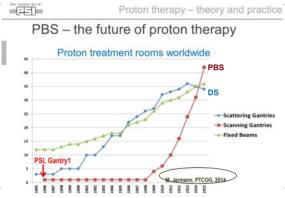
Lei Dong, Ph.D.

IBA custom

University of Pennsylvania

PENN RADIATION ONCOLOGY
Disclaimer: Varian Proton Advisory Board Member

Scope and Goals


- To learn about common tasks for commissioning a PBS based treatment room
- To discuss time management to deal with commissioning
- To discuss risk-based vs. the best practice based approaches

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

4

New PBS-based Treatment Rooms

General Definition of Clinical Commissioning

- Preparation to treat the first patient

- Workflow
 - Procedures, treatment protocol development, documentation
- Equipment purchase & commissioning
 - Vendor selections (immobilization to chamber selection)
- TPS commissioning
- Quality assurance procedures
- Training

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

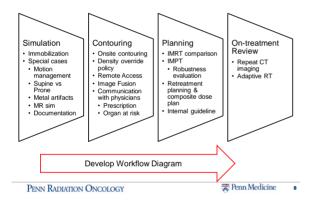
Two-Face (Phase) Process

Prior to room handover (90%)

- · Any preparation that does not need beam time
- Negotiate beam time for commissioning

After room handover (10%)

- · Beam calibration
- · External peer review
- Beam data acquisition
- TPS validation measurements
- End-to-end tests
- QA setup
- User training

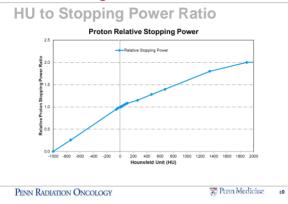

PENN RADIATION ONCOLOGY

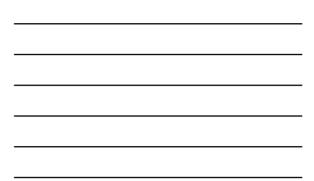
🐺 Penn Medicine

7

600

Simulation and Planning Workflow

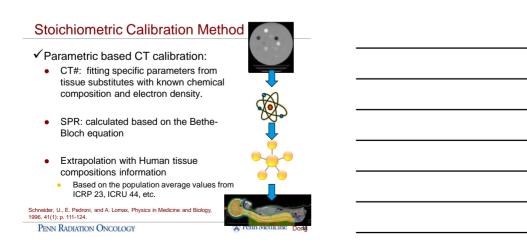



Clinical Protocol Development)
Clinical indicators What types of patients are suitable for proton therapy? Who are not? Why physicists should care about this: plan check!
Simulation procedure • Immobilization
Imaging requests
Treatment planning Prescription and normal tissue tolerances
Body contour (including treatment couch)
Density override policy
 Planning techniques (class solution, beam angle selection) SFO or MFO guideline
Plan report etc.

PENN RADIATION ONCOLOGY

🐯 Penn Medicine

Commissioning a CT Scanner



Phantom Composition is Different from Human Tissue!

PENN RADIATION ONCOLOGY

🕱 Penn Medicine

Additional Considerations

- Patient Size Issue
 - Acquire phantom calibration in both head phantom and body phantom, and create an average table
- Peer Review
 - Similar CT models at other proton therapy centers
- Special material table
 - · Known materials and their SPRs
 - · Dealing with metal artifacts
- Documentation of CT recon parameters
- Metal artifact reduction algorithm
 - · Impact to normal tissue HU numbers?

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

13

The First Week!

Evaluate measurement equipment

Assess key commissioning measurements

- electrometer and ion chamber evaluation (leakage, linearity, end-effect, ion collection efficiency, etc.)
- dose calibration
 Challenging issues with high dose rate pencil beam

water tank and scanning hardware and software tests

- detector tests for measuring beam profiles
- gantry angle dependence (to ensure that measurement can be done, and measurements at one gantry angle would be adequate)
- availability of accessories and other functions of the treatment unit

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

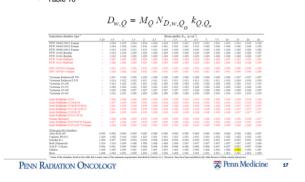
14

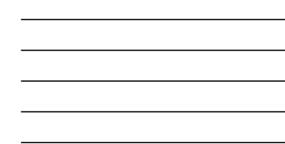
PBS Dose Calibration

IAEA TRS 398

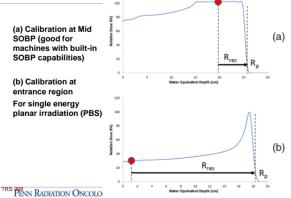
PENN RADIATION ONCOLOGY

Dose calibration


- Establish the relationship between dose at reference conditions to charge collected in the monitor chamber in the nozzle
 Dose / MU
 Steps
 - Purchase ion chambers meeting TRS 398 specs
 - Send ion chamber + electrometer to ADCL for calibration
 - Make measurements under calibration condition
 - How to select calibration condition?
 - Measure Pion and Ppol
 - Measure absolute dose


PENN RADIATION ONCOLOGY

Renn Medicine 16


⁷ Chamber Selection

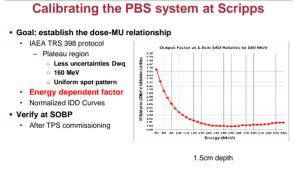
Calibration Condition for PBS

SOBP

20

- Chamber perturbation correction factor
- Combines many corrections into one factor that is looked up in TRS 398 based on beam quality (Rres)
- Very stable number with Rres > 5cm (ie, 8cm+ SOBP)

	1.04				NE	2571	
					Wellhö	fer IC69	
	1.03					30002	
					PTW	30001	
	1.02	· · · ·			Exra	din T2	-
٢	- 1		NE 2581				w
	1.01						-
	1.00	M	arkus	FWT	IC-18	_	
		B	loos			-	
	0.99			NACP			
	0.98						
	0		5	10	15	20	25
			Proton	n beam qui	ality, R _{res}	(g cm ⁻²)	
	;	k <u>o.o</u> ,	$=\frac{(s, s_{w})}{(s_{w})}$	$\left(\frac{v,air}{v,air} \right)_{Q_0} $	$(W_{air})_Q$ $(W_{air})_Q$	<i>PQ</i> <i>PQ</i>	

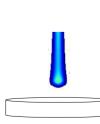

A reminieucine

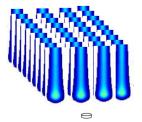
19

1.05 -

4

TRS 398 PENN RADIATION ONCOLOGY

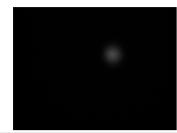



PENN RADIATION ONCOLOGY

Renn Medicine Dong/SPR

PBS Calibration Pattern

Large Chamber + Pencil Beam vs. Small chamber + Large Field



PENN RADIATION ONCOLOGY

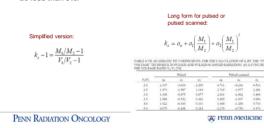
🐯 Penn Medicine

PBS Calibration Pattern

Scripps: 70-250 MeV Beam Calibration Energy: 160 MeV Depth: 1.5cm SAD

Correction for recombination: Pulsed scanned – 1.0062 *Pulsed – 1.0048 Continuous – 1.0017

"Avg Dose Rate" 60k MU/min Instantaneous DR ~ 10Gy/s


PENN RADIATION ONCOLOGY

Renn Medicine 22

23

Pion

- Corrects for recombination of ions in chamber. In other words, ions that are created but not collected.
- Two voltage technique with V1 and V2 differing by at least factor of 2.
 Our beam is pulsed scanned (pulsed for the chamber-eye-view)
- Generally this correction is less than 1%, but it is recommended to be less than 3%.

Peer Review

- External review by a physicist
 Bring independent chamber and electrometer
- IROC TLD measurements (at center of SOBP)
 - TR4: 1.00
 - TR3: 0.99
 - TR2: 1.00

TPS Commissioning Measurements

• See Dr. Zhu's presentation

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

25

Creating Machine QA Baselines

Timing to create monthly and daily QA baselines

- During commissioning when TPS is finalized
- Machine QA design
 - Verify the machine is in the same condition as your TPS predicts
 - Risk-based

PENN RADIATION ONCOLOGY

More about Risk-based Approach

 New ISO 9001:2015 promotes risk-based thinking in a quality management system due to the need for

balancing operational efficiency and

- comprehensive quality management
- Can we become **smarter** in our efforts while maintaining quality?
- Risk-based ≠ Taking risks (without thinking consequences)
- Act based on "calculated" risks
- Knowledge is needed to estimate risks

PENN RADIATION ONCOLOGY

Renn Medicine 27

Machine QA Philosophy

- Deciding what not to do are perhaps more important
- PBS (Spot Scanning vs. Raster Scanning)
 - Spot intensity (dose/MU)
 - Spot position
 - Spot energy
 - Spot shape/size
 - Dose Rate Stability?
 - Gantry dependence
 - Off-axis accuracy
 - Imaging-beam coincidence
- Robotic couch
 PENN RADIATION ONCOLOGY

🐺 Penn Medicine

28

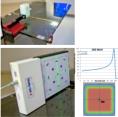
Assessing Risks Requires Knowledge

Relative risks for pencil beam delivery

- Spot Position (high risk)
- Spot Intensity/dose (high risk/impact)
- Spot Shape (intermediate risk)
- Spot Energy (low risk)

PENN RADIATION ONCOLOGY

🐺 Penn Medicine

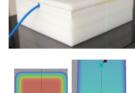

29

💭 Scripps

- therapists in the morning
- QA Phantom
- Imaging the block to verify:
 Laser
 - couch position
- Dose pattern
 - Uniform spot pattern
 4 electron chambers to measure energy (~1mm
 - resolution)
 - Central chamber for output
 - It can detect beam shape changes to some degrees

TR1_Daily, QA Birthdate Age ID1 TR1_Daily_QA

Daily QA


Monthly QA

Output measurement

- Repeat at machine calibration condition
 - Parallel plate chamber
 - Depth: 1.5 cm
 - Single layer
 - 160 MeV

Scripps

- Spot spacing 2.5mm
- Electrometer bias -400v

Scripps

Monthly QA

Energy Check

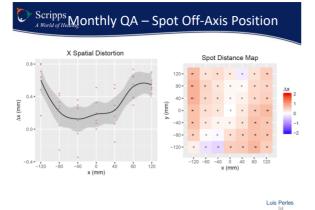
- Two-depth Technique

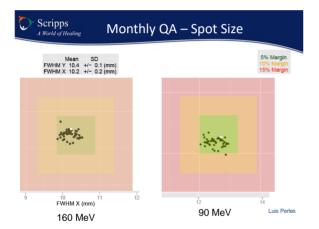
 Ratio of ion chamber readings
 - Base: 1.5cm build-up
 - Deeper depth: 16.5cm build-up
- Alternative
 - IBA Zebra™ (180 parallel plate chambers with 2mm resolution)

	90,	Teo Mev	
(%)	80		
9 1 6	70		
rated Depth Dose	60	+/	
bept	50	/	
ž	40		
<u>Tat</u>	30		
laei	20	+	
	10		
	0	+ I	
		0 20 40 60 Banthilmhil 140 160	

Scripps

Monthly QA


Spot Position Accuracy across the field


- Coarse Pattern
 - Geometric distortionFWHM in all positions
 - Shape of spots

120 ۲ (6 ۲ (۲ 80 6 6 6 40 0 ۲ 0 0 ۲ • ۲ 0 ۲ ۲ 6 6 ۲ • 6 6 6

Scripps A World of Healing Annual QA – Repeat Commissioning

- What if the QA baseline was wrong or changed?
- Repeat selected commissioning measurements
 - Measure IDD in water tank for selected energies
 - Measure spot shape and size for selected energies
 - Measure the relative energy dependence factor
 - Confirm range shifter thickness, integrity, and snout position accuracies

Summary: Establishing Machine QA Program

- Design tests to <u>track changes</u> from the TPS commissioning conditions (Risk-based; continuous improvement)
- Define <u>Tolerances</u> for each test
- Define <u>Actions</u> if out of tolerance

Treat options

- Alternative validations
- Additional tests for trouble-shooting
- Standard Operating Protocol (SOP)
 - Contact List
 - Decision making

PENN RADIATION ONCOLOGY

References: • TG-224 (work-in-progress) • Previous PTCOG presentations • Booke (books, AAPM summer school proceeding etc.) • Standard Practice Guidelines (AAPM TG-40; TG-179, TG-142, IAEA TecDoc 1040 etc.

🕱 Penn Medicine

🐯 Penn Medicine

38

3

Summary of Clinical Commissioning

- · Clinical commissioning is a multi-task project
 - Start with self-education
 - · Distribute work into smaller tasks
 - · Planning and task management skills are important
 - Team work
- Intense commissioning tasks involving physics/dosimetry:
 - Dose calibration
 - TPS commissioning
 - QA procedures
 - Workflow
 - · Planning comparison
 - · Procedures and documentation

PENN RADIATION ONCOLOGY

Page 13