

THE UNIVERSITY OF TEXAS

Making Cancer History®

Intra-Operative Radiation Therapy using Mobile Linear Accelerators

Sam Beddar, Ph.D., FCCPM, FAAPM Professor & Chief of Research

Department of Radiation Physics The University of Texas MD Anderson Cancer Center

1905 – Carl Beck

History of IORT

- 1st report of IORT in 1907 by Carl Beck
- 1964 Abe in Japan
- 1st US IORT in 1975 @ Howard University
- MGH 1978, NCI 1979, Mayo Clinic 1981, Joint Center 1982, MCO 1983
- 1st Mobile LINAC: Novac7 in Italy in 1997
- 1st Mobile LINAC Mobetron prototype in the US: UCSF in 1998
- 1st Commercial Mobetron installed @ University Hospitals of Cleveland in 1999

Before the mobile systems

- The tremendous logistics to transport the patient under anesthesia from the OR to radiation oncology deterred many centers from implementing the procedure
- Many centers lost interest after only few cases

Novac 7

Mobetron 2000

Mobetron 2000

Mobetron 1000

Transport Mode

Treatment Mode

Commissioning – before & after

... It goes around corners

... to the OR floor

...it fits in elevators, but can't walk up stairs yet

... in the OR

Control console outside the OR

Applicator Placement

Almost ready to treat

Soft Docking – Laser Alignment System

Treatment Delivery

Multidisciplinary: Roles & Team Work

Advantages of IORT

Advantages of IORT

- Provides a large dose of radiation to the tumor/ tumor bed at the time of surgery, while normal tissues can be displaced from the radiation field
- Potentially decreases side effects and complications of radiation therapy
- Shortens overall treatment time for the patients by decreasing the number of visits to the Radiation Oncology Department
- Social niche (breast cancer)
 - poor countries, with no access to breast conservation an alternative
 - rich countries, where patients can't fit RT treatment into their schedules

Advantages of IORT

Machine Characteristics

- Electron energies: 4, 6, 9 and 12 MeV with dose rates up to 10Gy/min
- Flat and beveled electron applicators (3.0 to 10.0 cm, 0.5 cm increments)
- Plastic Boluses (0.5 or 1.0 cm)
- Soft-docking system
- 50 cm nominal SSD, non-isocentric
- 6 degrees of freedom (3 transl., 3 rot.)
- Beam stopper tracks the beam (self-shielded)
- No need for shielding in the OR
- Plugs into normal 3-phase electrical outlet / single-phase input

Wootton et. al., 2016

Why No Shielding Requirements?

- Electron Beam Only– Low beam current greatly reduces radiation leakage.
- No Bending Magnet The most significant source of leakage in a conventional accelerator is eliminated.
- X-ray Contamination Extremely Low!

Mills et. al., 2001

Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72

TABLE OF CONTENTS

I. INTRODUCTION.	1477
II. IORT USING MOBILE VERSUS STATIONARY	
LINEAR ACCELERATORS	1477
III. IMPLEMENTATION OF AN IORT PROGRAM	
WITHIN AN OPERATING ROOM	
ENVIRONMENT	1478
IV. RADIATION PROTECTION	1478
A. Regulatory considerations	1479
B. Radiation site plan.	1479
1. Treatment operating rooms	1479
2. Commissioning and annual quality	
assurance location.	1479

C. Radiation survey	1479
D. Exposure rate measurements	1479
V. ACCEPTANCE TESTING AND	
COMMISSIONING	1480
A. Acceptance testing measurements	1480
B. Commissioning and dose measurements	1482
VI. RECOMMENDED QUALITY ASSURANCE	1484
A. Previous quality assurance recommendations	
for medical linear accelerators	1484
B. Quality assurance for mobile electron	
accelerators	1484
VII. CLINICAL ASPECTS OF IORT TREATMENT	
DELIVERY: DOSE SPECIFICATION	1486
VIII. RECOMMENDATIONS FOR FUTURE	
CONSIDERATIONS	1487

1476 Med. Phys. 33 (5), May 2006

0094-2405/2006/33(5)/1476/14/\$23.00

© 2006 Am. Assoc. Phys. Med. 1476

References – Mobile Systems

- Beck C, "On external Roentgen treatment of internal structures eventration treatment," N. Y. Med. Journal 89, 621–622 1909.
- Abe M, "Intraoperative radiotherapy past, present and future," Int. J. Radiat. Oncol., Biol., Phys. 10, 1987–1990 (1984).
- Beddar AS, Krishnan S. Intraoperative radiotherapy using a mobile electron LINAC: A retroperitoneal sarcoma case. J Appl Clin Med Phys 6(3):95-107, 2005.
- Beddar AS. Stability of a mobile electron linear accelerator system for intraoperative radiation therapy. Med Phys 32(10):3128-3131, 10/2005.
- Beddar AS, Biggs PJ, Chang S, Ezzell GA, Faddegon BA, Hensley FW, Mills MD. Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72. Med Phys 33(5):1476-1489, 5/2006.
- Mills MD, Fajardo LC, Wilson DL, Daves JL, Spanos WJ. Commissioning of a mobile electron accelerator for intraoperative radiotherapy.J Appl Clin Med Phys. 2:121–130, 2001.
- Beddar AS, Briere TM, Ouzidane M. Intraoperative radiation therapy using a mobile electron linear accelerator: Field matching for large-field electron irradiation. Phys Med Biol 51(18):N331-337, 9/2006.
- Wootton LS, Meyer J, Kim E, Phillips M. Commissioning, clinical implementation, and performance of the Mobetron 2000 for intraoperative radiation therapy, J Appl Clin Med Phys:18: 230–242, 2017.

Additional Slides for References

Disclaimer

I am only providing these additional slides for additional information and educational purposes to complement my personnel presentation and experience using the Mobetron 1000. The slides below were obtained from IntraOp Medical to show the new version of the Mobetron: Mobetron 2000.

The author has no direct affiliation with Intraop Medical, Inc. and received no financial support for the research reported in his work in the past/present or for giving this invited presentation.

The author thanks Derek Descioli, VP Global Sales. IntraOp and Dan Goer, Co-Founder of IntraOp in 1993 and serving currently as its Chief Scientist.

IntraOp Mobetron Treatment Applications

K

Treatment Application Characteristics

Tumor	Energy [MeV]			Applicator	В	evel [de	g]	½ cm sized	
	6	9	12	diameter [cm]	0	15	30	applicators	
Breast	26%	48%	24%	4–6 (84%)	53%	31%	15%	35%	
Colorectal	35%	50%	10%	4 – 7 (86%)	8%	4%	88%	21%	
Pancreas	24%	26%	49%	5 – 7 (77%)	73%	12%	16%	22%	
Sarcoma-Extremity	45%	46%	8%	10 (30%)	39%	13%	48%	12%	
Sarcoma-RPS	22%	58%	19%	10 (23%)	34%	8%	58%	11%	

Source: IntraOp Mobetron User Database

IntraOp Mobetron Output Stability

Mobetron Output Variation for Various Energies

Source: Beddar, et al. 2005

Mobetron Long Term Stability

	Absol	ute Calibrati	on Output (c	:Gy/MU)
Electron Energy	4 MeV	6 MeV	9 MeV	12 MeV
Commissioning 1999	0.999	0.997	0.993	1.001
Annual Calibration 2000	0.987	0.993	1.004	1.010
Percent Change (%)	- 1.2 %	- 0.4 %	+ 1.1 %	+ 0.9 %

Mobetron Energy Ratio Variation

Equivalent PDD Shift								
4 MeV	0.6 mm							
6MeV	0.8 mm							
9 MeV	0.8 mm							
12 MeV	0.4 mm							

Source: Beddar, et al. 2005

Technical and Clinical Review of Mobetron Usage

-

Mobetron Treatments Characteristics

- Worldwide, 56% of Mobetron treatments were for breast cancer (83% in Europe, 20% in the U.S, and 33% in Asia).
- For the non-breast data main sites were: Colorectal (21%), Pancreas (15%), Extremity Sarcomas (22%) and RPS (8%).

Breast data characteristics

► For the breast data received:

- ▶ 71% of breast patients were treated as a boost (75% EU, 72% U.S., 16% Asia).
- ▶ 29% of boost treatments followed by 3 weeks EBRT.
- ▶ 48% were treated at 9 MeV; 26% at 6 MeV; and 24% at 12 MeV (2% @ 4 MeV).

Breast data characteristics (continued)

- ► For the breast data received:
 - 84% of patients were treated with FS between 4-6 cm.
 - 35% of patients were treated with a ½ cm sized applicator.
 - 3% of patients were treated with a FS > 7 cm.

Breast Applicator Diameter [cm]

ISIORT Breast Treatments Characteristics

- 42 Collaborating Centers
- ▶ 8,075 Breast cancer patients
 - ▶ Median age 61 years (16 90)
 - 81.8% T1 and 16.1% T2
 - ▶ 96.5% Ductal carcinoma; 3.5% Lobular
 - ▶ 52.2% Surgery + IORT
 - ▶ 47.8% Surgery + IORT + EBRT
 - ▶ CT in 13.2% of cases

APBI Single Fraction Treatment Clinical Results

- a

Single Fraction Clinical Results

					ASTRO Suitable			ESTRO Good			
Reference	Median FU (yrs)	Total # pts	# LR	LR (%)	# pts ASTRO Suitable	#LR	LR (%)	# pts ESTRO Good	#LR	LR (%)	
ELIOT ⁽¹⁾	5.8	585	34	5.8%	135	2	1.5%	-	-	-	
ELIOT Out Trial (2,3)	3.5*	1822	75	4.1%	294	3	1.0%	573	7	1.2%	
U. of Verona ^(4,5)	5	226	4	1.8%	128	1	0.8%	160	3	1.9%	
Brussels ⁽⁶⁾	2	204	1	0.5%	87	1	1.1%	151	1	0.7%	
Japan ⁽⁷⁾	6	32	0	0%	16	0	0%	28	0	0%	
Brazil ⁽⁸⁾	4.3	152	5	3.2%	48	0	0%	92	2	1.9%	
Naples ⁽⁹⁾	4	13	0	0%	7	0	0%	13	0	0%	
China ⁽¹¹⁾	4.3	36	2	5.6%	2	0	0%	6	0	0%	
Stanford ⁽¹⁰⁾	6.8	64	1	1.6%	-	0	0%	-	0	0%	
Total		3134	122		717	7		1023	13		

Source: Horst et al., Presented at 2016 ASCO Annual Meeting

5 yr LR of <2% for Low Risk Patients

Updated ASTRO APBI Guidelines Affirm the use of Electron IORT

- 2016 ASTRO APBI Consensus Guidelines update removes experimental status for electron IORT in suitable patients
- Citing Evidence from Multivariate analysis on randomized trial with median follow up of 5.8 years
- More than 3,000 patients receiving single treatment electron IORT have been studied in the literature
- Electron IORT is the only single treatment option recognized by the updated ASTRO guidelines

ASTRO Suitable Criteria

AGE: 50 years or older SIZE: <2 cm NODAL STATUS: pN0 HISTOLOGY: IDC/Favorable MARGINS: Negative (≥2mm) **ESTROGEN RECEPTOR:** Positive **LVSI:** Negative **DCIS**: Low to intermediate ≤ 2.5 cm **DCIS MARGIN:** Negative (\geq 3 mm) SYSTEMIC THERAPY: No neoadjuvant **GRADE:** Any