1. Introduction
--- Breast Cancer treatment

1. The standard of care currently for locoregional treatment of breast cancer is breast conserving surgery followed by whole breast external beam radiotherapy (EBRT).

2. An alternative to standard EBRT is intraoperative radiation therapy (IORT) in which at the time of breast conserving surgery a single dose of radiation is delivered.

3. Spherical applicator based Zeiss Intrabeam system is one of the emerging techniques for breast IORT treatment.

Rationale for using IB-IORT

2. Carl Zeiss Intrabeam System

Low energy, 40 or 50 kV x-ray. Shielding is easy to handle.
Slide 7

Intrabeam Components
- Spherical Applicators for breast (2 to 5.0 cm)
- Brain IORT needs smaller applicators.

Slide 8

Intrabeam Components
- Intrabeam cart
 - Mobile — does not need to remain in operating room,
 - Store all patient treatment, QA components and data in cart,
 - QA checks are performed on the cart —
 Does not require doing the QA in the Operating Room.

Slide 9

Advantage of Intrabeam
- IB-IORT
 - 1. **Advantage**: Because the treatment site can be seen by MD before treatment, so the accuracy of applicator placement is superior,
 - 2. **Advantage**: Because it is one time treatment after tumor removal, so patient does not have to come back for a protracted treatment course seen in EBRT,
 - 3. **Advantage**: Equipment is compact and mobile, so it can be used to treat patients from one OR after another.
1. Dose distribution is isotropic when Zeiss spherical applicator is used,
2. very steep,
3. steeper than 125I source,
4. drops to ~35% of applicator surface dose at 10 mm depth.
5. drops below 10% of surface dose at 25 mm depth.

M.Schwid, E. Donnely, H.Zhang, Therapeutic Analysis if Intrabeam IORT. JACMP, In press.

3. IB IORT for breast cancer

IB-IORT Planning/treatment Steps
1. MD examines the cavity after surgery, check the size with applicator (or dummy), decides an applicator size, MD mounts the applicator onto the arm, inserts the applicator into cavity and secure it.
2. MD uses ultrasonic image to verify applicator position.
3. Physicist enters the applicator size and prescription dose into computer. For TARGIT A clinical trial, dose is 20 Gy at the applicator surface.
4. Compare the computer calculated treatment time with a ready-made look-up table. 10% difference is acceptable, otherwise physicists need to investigate the cause.
5. MD double check the entry and treatment time with the look-up table.
6. Treat patient.

Slide 13

Northwestern Memorial Hospital Department of Radiation Oncology

Look-up Table for Intra-beam IORT Treatment Time

<table>
<thead>
<tr>
<th>Surface @ 5 mm</th>
<th>Surface @ 10 mm</th>
<th>Surface @ 15 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>29.76</td>
<td>56.32</td>
</tr>
<tr>
<td>3.5</td>
<td>21.30</td>
<td>44.08</td>
</tr>
<tr>
<td>4.0</td>
<td>29.43</td>
<td>57.32</td>
</tr>
<tr>
<td>4.5</td>
<td>39.65</td>
<td>72.59</td>
</tr>
<tr>
<td>5.0</td>
<td>52.47</td>
<td>92.12</td>
</tr>
</tbody>
</table>

50 kV, 40 µA. Prescription Dose: 20 Gy
(Output: 2.361 Gy/min at XRS tip)

Slide 14

4. IB-IORT QAs --- Why monthly QA is needed?

- 1. Performance of IB-IORT or electronic brachytherapy source depends on a lot of working conditions, such as target, voltages, temperature, etc. It is like a tiny accelerator, its output may need to be checked frequently.
- 2. Daily QA output check is not completely fool-proof.
- 3. Measurement in water tank will give a convincing verification of XRS source’s dose output each month.
- 4. Clinical trial requires institution to maintain a solid monthly QA record.

Slide 15

Zeiss Intrabeam Monthly QA

- Monthly QA always starts from the daily QA.
- Daily QA is performed on each treatment day before patient receives IORT.
- Manufacturer provided radiation shielded QA instruments:
 - [1]. PDA (Photodiode Array)
 - [2]. PAICH (Probe adjuster/ionization chamber holder)
 - [3]. High precision water phantom for absolute dose rate measurement.
Slide 16

Daily QA – PDA
(Photodiode Array)

- PDA Contains five photodiodes
- Used for Isotropy check
- Align the electron beam direction with the mechanical center of the probe.
- Steering of electron beam based on the photodiode readings

NORTHWESTERN UNIVERSITY

Slide 17

Daily QA – with PAICH
(Probe Adjuster Ion Chamber Holder)

- PAICH used for XRS probe straightening. If needed, Manually straighten the Probe using a plunger
- Measure Output (cGy/min) with ion chamber
- Does not provide absolute dose rate in any water depth, but possible to compare the in-air measurement with the in-water measurement at factory to determine absolute dose rate.

NORTHWESTERN UNIVERSITY

Slide 18

Daily QA form

NORTHWESTERN UNIVERSITY
Slide 19

Monthly QA – with Water Phantom

- To perform independent verification of depth dose and dose distribution in water,
- use Radiation shielded (lead glass) water tank,
- Micrometer screw mechanical positioning accuracy of +/- 0.1 mm

Slide 20

Monthly QA
XRS- output water tank measurements

1. Checking the (in-plane and cross-plane) lateral position using micrometer screws and current measurement with the dosimeter. The probe tip has been centered above the measuring window of ionization chamber.
2. Move the probe tip downward until it almost touches the measuring chamber.
3. Watch the shadow of a flashlight from other side, moving the probe tip downward until the shadows from two sides connect each other and there is no light you can see at the tip.
4. The position where you just reached is the exact position of the probe tip.

Slide 21

Find the tip-touching position
5. This is the minimum reachable distance r_1 from the source tip, on the other hand, calculate the shortest achievable distance of the XRS tip from IC ionization chamber, r_1.

a) d_{IC}: thickness of ion-chamber window: 0.245 mm, as indicated in the ion-chamber manual.

b) d_A is the air gap between the upper surface of ionization chamber and the inner surface of ion-chamber housing, $d_A = 0.5$ mm.

c) d_H is the thickness of measuring chamber housing wall. $d_H = 1.001$

d) $r_1 = d_H + d_A + d_{IC} = 1.746$ mm

7. We find micrometer reading 47.415 is for 1.746 mm, so the 3 mm will have the micrometer reading of 46.161, 25 mm will have reading of 23.161.

8. Move IB-IORT source upward from 3 mm to 25 mm.

9. Use charge mode, use integration key to record readings at each depth.

10. Select some distances, get readings all the way from 3 mm to 25 mm.

Get charge readings $Q(r)$, all the top from 3 to 25 mm. Calculate the dose rate output of the XRS source:

$$ D_{ph}(r) = N_k Q(r) C_{TP} F_{ph}(r) $$

1. N_k is the ion-chamber calibration factor provided by ACDL;

2. C_{TP} is the temperature and pressure correction factor; $C_{TP} = (t+273.12) * 760 / (295.12 * P)$

3. k_Q is the beam quality factor, 1.002 for 50 kV beam;

4. $K_{Ak→DW}$ is the air-kerma to dose in water conversion factor, 1.054 as indicated in the manual.

5. $F_{ph}(r)$ is the phantom factor due to Zeiss QA phantom is different than Zeiss calibration phantom.
Table 1. Measured depth doses without applicators. (2/25/2015)

<table>
<thead>
<tr>
<th>Distance from source tip, r(mm)</th>
<th>N</th>
<th>R1(nc)</th>
<th>R2(nc)</th>
<th>R3(nc)</th>
<th>Q Avg(nc)</th>
<th>Fph(r)</th>
<th>Output measured (Gy/min)</th>
<th>Manual output (Gy/min)</th>
<th>Difference</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.19</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
<td>0.046</td>
<td>0.1857</td>
<td>0.259</td>
<td>0.0463</td>
<td>0.04599</td>
<td>0.04731</td>
<td>2.85%</td>
</tr>
<tr>
<td>29.19</td>
<td>0.086</td>
<td>0.085</td>
<td>0.086</td>
<td>0.086</td>
<td>0.0857</td>
<td>0.472</td>
<td>0.0866</td>
<td>0.0864</td>
<td>0.0002</td>
<td>0.21%</td>
</tr>
<tr>
<td>34.19</td>
<td>0.186</td>
<td>0.185</td>
<td>0.186</td>
<td>0.186</td>
<td>0.1857</td>
<td>0.9973</td>
<td>0.1869</td>
<td>0.1867</td>
<td>0.0002</td>
<td>0.12%</td>
</tr>
<tr>
<td>39.19</td>
<td>0.55</td>
<td>0.551</td>
<td>0.55</td>
<td>0.55</td>
<td>0.5517</td>
<td>0.259</td>
<td>0.5506</td>
<td>0.5520</td>
<td>0.0014</td>
<td>-0.26%</td>
</tr>
<tr>
<td>44.19</td>
<td>3.488</td>
<td>3.495</td>
<td>3.495</td>
<td>3.495</td>
<td>3.4920</td>
<td>0.71176</td>
<td>3.4933</td>
<td>3.4951</td>
<td>0.0174</td>
<td>0.49%</td>
</tr>
<tr>
<td>49.19</td>
<td>11.46</td>
<td>11.45</td>
<td>11.45</td>
<td>11.45</td>
<td>11.4533</td>
<td>0.63731</td>
<td>11.466</td>
<td>11.474</td>
<td>0.0074</td>
<td>-0.63%</td>
</tr>
</tbody>
</table>

Figure. Comparison of the measured and Zeiss provided XRS dose rate output without applicators at different depths.
Thanks for your attention!

AAPM 2017

NORTHWESTERN UNIVERSITY

Thanks for your attention!