Software Aided Treatment Plan Verification

2017 AAPM
Gilad N Cohen, MS DABMP
Department of Medical Physics, MSKCC
cohenng@mskcc.org

Learning objectives

• Verification approaches
 strengths, weaknesses
• Adapting plan verification to clinical process
 hardware
 available resources
• Integration of modern verification tools in the clinic
Plan verification basics

- **What we check:**
 - Concordance with prescription (ID, site, isotope, dose, fx...)
 - Dose calculation
 - Geometry
 - Plan quality
 - Other (technical) checks

- “Classical” plan checking
 - Manual secondary dose calculations
 - Re-planning
 - Check lists
 - Nomograms

- **Modern verification tools**
 - Excel worksheets
 - DICOM based software
 - Custom software
Commercial systems
• DICOM based dose secondary calculations
• Display data / export data for analysis
• 3D display of reconstructed source positions, dose points

Commercial systems -- limitations
• Rely on TPS DICOM data and exported implant geometry
• Lack verification with written directive, EMR
• May not address facility specific process, quality assessment, technical requirements.
Key features:
• Treatment console file = primary input
• Independent detection & reconstruction of standard applicators
• User assisted reconstruction of template based implants (prostate, GYN interstitial, H&N)
• Calcs within 2% for std applicators, 5% for all implants

Most common errors detected:
• Mis-digitized channels/catheters
 – Switching, doubling, etc
• Mis-identified reference points
• Clinic guidelines not followed
• Errors in dose calculation
Key features:

- Imports DICOM data (incl contours, dose)
- Performs secondary dose calculation
- Evaluates plan quality using independently calculated dose-volume indices.

Main Quality parameters used to assist in planning:

- CN – PTV & healthy tissue
- COIN – PTV, OAR & Healthy tissue
- HI – PTV homogeneity
Key features:
• Taps patient EMR:
 – Verification with written directive
 – Verification of channel assignment and length
• Eliminates manual checks
• Highly customizable to clinics requirements and processes (e.g. reasonableness criteria)
• Secondary dose calculation

Results: reduced errors and improved efficiency

Custom (home grown) software tools:
Implementation requires time, know-how
Yet
Increase efficiency, efficacy
Customizable to clinics needs
Example: Afterloader specific customization

• Verification of catheter length (Elekta)
 – Ensure planned and measured lengths agree

• Verification of minimum dwell time (GammaMed)
 – Ensure plan is executable with all possible source strengths

Example: Applicator specific customization

• Correction of source dwell position definition to account slack in curved applicators
 – Varian Tandem and Ring
 – Split ring applicator

Example: Clinic specific customization

• Plan reasonableness:
 – TRAK assessment
 – If new, consider existing systems and adjust after gaining experience
 e.g. Applying Manchester system to HDR:

 \[
 T = 2.24 \left(\frac{V}{\text{cm}} \right)^{3} \exp\left(\frac{0.07 + 0.05}{1 - T} \right)
 \]

 \[
 T = -5.009 \left(\frac{\text{cm}}{\text{cm}} \right) \left(\frac{V}{\text{cm}} \right) \exp\left(\frac{0.07 + 0.05}{1 - T} \right)
 \]
Things to watch for:

• Manual processes:
 – Image calibration (magnification)
 – Length measurements
 – Further considerations for LDR (intraoperative workflows)

• Vendor
 – Updates
 – CTB

A note on process design

• Requires clear and precise definitions

• Agreed upon clinical process to followed by all members of the BT team

Summary:

• Secondary dose calculation can be performed efficiently. All report within 5% of TPS
• Independent reconstruction of geometry is an useful tool
• Assessment of quality parameters may be used to assist in planning process.
• Software can be tailored to specific hardware & EMR requirements and clinical preferences
Thank you!