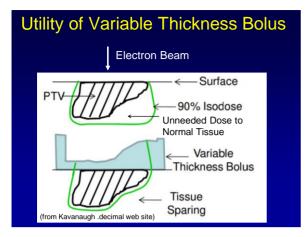
Bolus Electron Conformal Therapy (ECT)

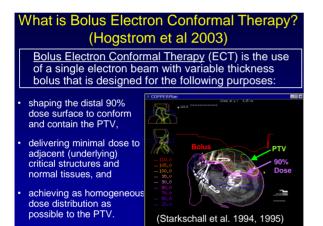
Personalized Electron Beam Therapy Using Custom Treatment Devices

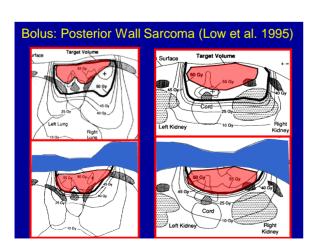
2017 AAPM Annual Meeting, Denver, CO

Kenneth Hogstrom, PhD

Senior Medical Physics Advisor, Mary Bird Perkins Cancer Center Professor Emeritus, LSU Medical Physics & Health Physics Program Professor Emeritus, The University of Texas M D Anderson Cancer Center

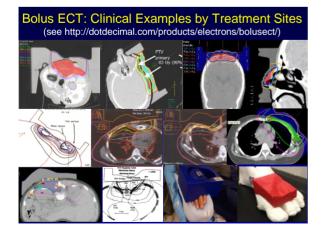

Bolus Electron Conformal Therapy

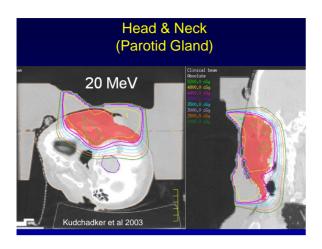

- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation

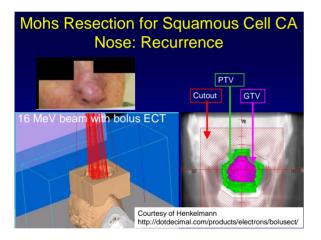

Types of Electron Boluses

- Uniform-thickness bolus (e.g. chest wall, scalp)
 - Increases surface dose (low energy beams)
 - Spares distal tissues by providing continuously varying energies (6-20 MeV) from set of typically 7
- Flat-top bolus (e.g. nose or ear)
 - Smoothes skin surface (perpendicular to beam direction) reducing dose heterogeneities
- Variable-thickness bolus (all sites)

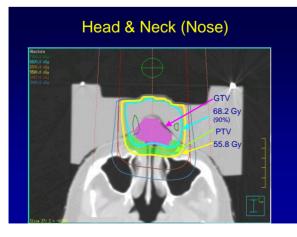
 Thickness varies with off-axis position conforming therapeutic range (e.g. R₉₀) to distal PTV surface.

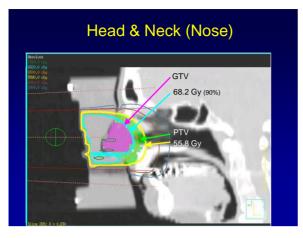


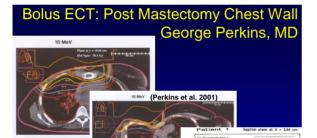


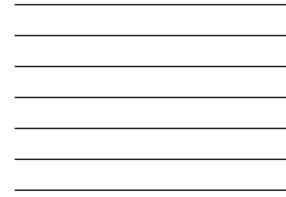

Bolus: Posterior Wall Sarcon	na (Low et al. 1995)
(a) Terpet Volume Deservatione Hategories (b) General Code Deservatione Hategories (c) General Code Deservatione	KUM
(c) Let Lop Date Yolane Natagenes (c) Lop Date Yolane Natag	Conclusions (bolus ECT vs. e⁻ only):
(a) Bight Addary Data-Normal Relegant	 Bolus ECT greatly reduces dose to normal tissue. Dose heterogeneity to PTV is increased.

Bolus Electron Conformal Therapy


- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation



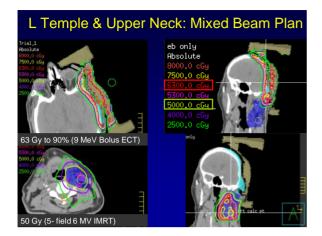


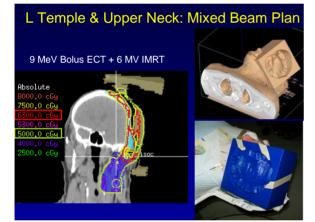


Mixed Beam L Temple & Upper Neck

Patient History

- Recurrence (1 year post-resection) differentiated squamous cell CA: 7-8 cm tumor resection (+ margins)
- L Temple Prescription
 - 63.0 Gy (28 fx) to 90% isodose surface
 Bolus ECT using L oblique 9-MeV e⁻ field
 - Bolus ECT using Lobilque 9-MeV e Tie
- L Upper Neck Prescription
- 50 Gy (25 fx)
 IMXT using 5-fields of 6MV x-rays
- Abuts bolus ECT field (w/o bolus)

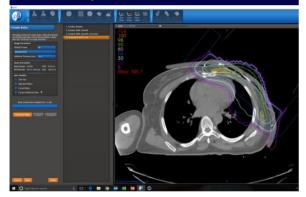

Courtesy of Henkelmann http://dotdecimal.com/products/electrons/bolusect



Kudchadker et al. 2002

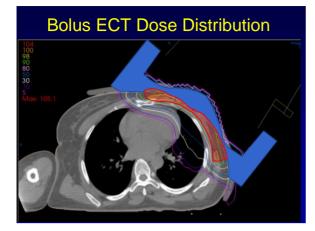
Bolus Electron Conformal Therapy (ECT)

Bolus Electron Conformal Therapy


- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation

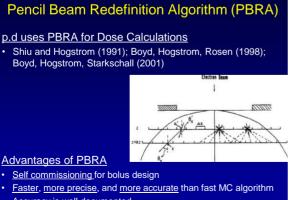
Bolus ECT Treatment Planning Process

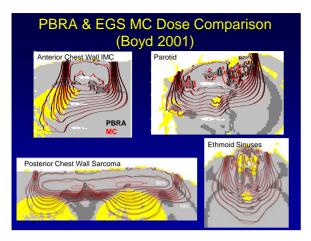
(highlighted steps are bolus specific)


- · Perform planning CT scan of patient
- Plan w/o bolus in clinical TPS (e.g. Pinnacle or Eclipse)
 - Delineate PTV and prescription
 - Specify e⁻ beam angle (\perp to distal PTV surface)
 - Specify e⁻ beam energy (R₉₀>max PTV depth)
 - Determine field shape (PTV + margin)
 - DICOM transfer plan w/o bolus to bolus design system
- Design bolus with .decimal p.d software (Low et al. 1992)
 - Create initial bolus (thickness = R_{90} depth to distal PTV)
 - Calculate dose using PBRA and modify as needed
 - Transfer bolus to TPS for dose calculation & .decimal for milling

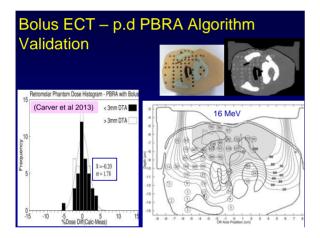
.decimal p.d BolusECT® Software

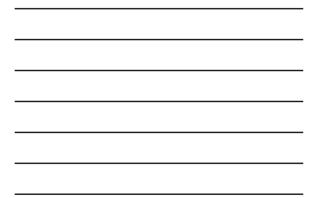
Bolus Design Using Operators (Low et al 1992)

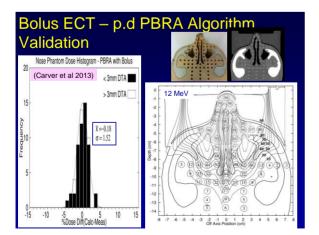

Create Bolus		
This page creates the custom construction operation and se then dick "Generate" to creat	t the parameter values	
Design Parameters		1. Create, Smooth
Distal PTV Dose:	90 🔅	2. Isodose Shift, Smooth
Specified Shift		3. Isodose Shift, Smooth, Truncate
Additional Thickness (mm):	-2.5 🗘	*4. Specified Shift (-2.5)
Beam Information Beam Energy: 13 MeV	R90: 4.01 cm	
Eff Field Size: 22.6 x 14.6	5 cm SSD: 102.0 cm	

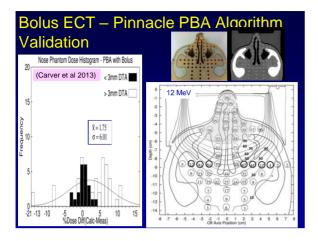

Bolus Electron Conformal Therapy

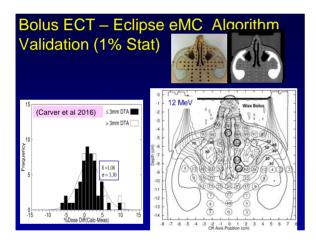
- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation




Accuracy is <u>well documented</u>


Bolus Electron Conformal Therapy (ECT)


-		



Bolus ECT: Dose Calculation Accuracy

Dose differences (Calculated – Measured): Mean ± 1 SD			
	Retromolar Trigone	Nose	
p.d PBRA ¹	-0.20% ± 1.54%	-0.18% ± 1.22%	
Eclipse eMC ²	+0.01% ± 2.38%	+1.30% ± 3.35%	
Pinnacle PBA ¹	-0.05% ± 3.14%	-1.75% ± 5.94%	
	¹ Carver et al. 2013	² Carver et al. 2016	
Conclusions			

- p.d PBRA is most accurate for bolus ECT planning.
- Eclipse eMC is sufficiently accurate for bolus ECT.
- Pinnacle PBA is marginally accurate for bolus ECT.

Bolus Electron Conformal Therapy

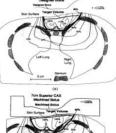
- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation

History of .decimal LLC Bolus Fabrication (Machineable Wax)

- MD Anderson Bolus ECT (Low et al 1992)
 - 1992-2000 in-house fabrication
 - 2000-2004 .decimal fabrication
- .decimal, LLC Offers BolusECT® (2009)
 - Free p.d device designing system (integrates with TPS)
 - Fabrication cost: \$300-\$1,000 (size & delivery)
- US Market
 - 350 institutions to date
 - 2,200+ boluses delivered to date (500 in 2016)

BolusECT® - Bolus Fabrication

- <u>Bolus fabrication</u> by .decimal, LLC (Sanford, FL)
 - p.d sends bolus file to .decimal for fabrication
 - Bolus milled from machineable wax block (Low et al 1994)
 - Delivery: 1-2 days



Bolus ECT: Pre-treatment Quality Assurance (Low et al. 1995)

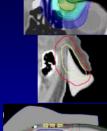
- Quality Assurance (factory)
 .decimal verifies thickness before shipping
- Quality Assurance (clinic)
 - Acquire patient CT scan w/ bolus
 Initially: CT simulator
 Daily: Cone beam CT
 - Calculate dose with bolus on patient
 - Verify bolus fabrication and localization by comparing dose calculation with dose plan

Bolus Fabrication (3D Printing)

- Under development by 3D Bolus, Inc.
 - Bolus design using Su, Robar et al (2014) algorithms
 - Alternative business model for bolus ECT
- Planning
 - User purchases bolus ECT planning software
 - Compatible with TPS, but all dose calculations done in TPS
- Fabrication
 - User purchases 3D printer
 - User sets up 3D printing lab
 - User 3D prints bolus

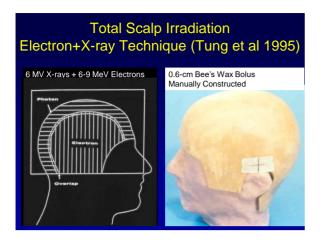
Bolus Fabrication (3D Printing) Challenges

- Cost, space, & maintenance of 3D printer & supplies
- Long printing time for large boluses (0.5-2 days)
- · Printing with accuracy and homogeneity
- · Availability of commercial bolus design software

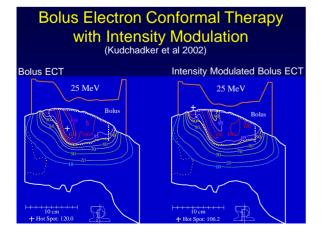

AXIOM 20 DUAL Direct Drive 3D Printer \$9,995.00 https://airwolf3d.com/shop/tall-desktop-3d-printer

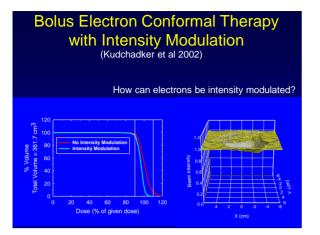
Bolus Fabrication (3D Printing) Clinical Bolus

- Patient Boluses
 - Limited published clinical examples
 - Primarily smaller boluses/field sizes
- Small Bolus

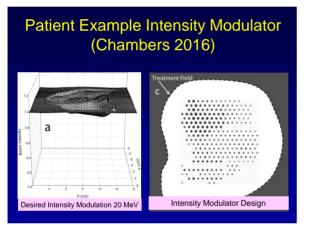

- Pinna (Zhao et al 2017)
- Medium Bolus
 - Rhabdomyosarcoma (Su et al 2014)

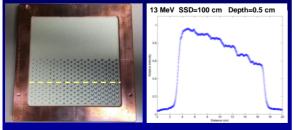
Constant Thickness Bolus


Useful for MV x-ray & electron beam dose buildup




Bolus Electron Conformal Therapy


- I. What is Bolus ECT?
- II. Clinical Utilization of Bolus ECT
- III. Planning Bolus ECT
- IV. Bolus ECT Dose Calculation Accuracy
- V. Delivering Bolus ECT (Fabrication & QA)
- VI. Future Potential for Intensity Modulation



Electron Intensity Modulation Proposed Method

(Hogstrom et al 2017, accepted, JACMP)

 Passive Radiotherapy Intensity Modulators for Electrons-<u>PRIME</u> (equivalent to compensators for x-rays)

Passive Electron Intensity Modulators

- <u>Under development by .decimal LLC & MBPCC</u>
 - Planning software
 - Passive delivery device (intensity modulator)
 - Clinical QA methods
- Potential Applications
 - Bolus ECT
 - Penumbra matching of electron fields of differing energy (segmented-field ECT)
 - SSD and irregular surface effects of electrons

Impediments to Bolus ECT Utilization

- · Lack of equitable billing codes
- Competition with IMXT, which has
 - Slightly better PTV dose homogeneity
 - Comparable doses to nearby normal tissues
 - Greater chance of secondary cancer to distal tissues
 - Greater revenue stream
- Decreasing knowledge of electron therapy amongst radiotherapy staff
- Antiquated electron planning tools in TPS
- · Greater ease of use of bolus design tools
 - e.g. managing unsmoothed juts in distal PTV surface

Summary: Bolus ECT

- Bolus ECT conforms the 90% dose surface to the PTV, significantly improving sparing of normal tissue.
- The utility of Bolus ECT for head and neck, postmastectomy chest wall, posterior chest wall, and extremities, is well documented in the literature (1995-present).
- BolusECT® has been commercially available for 8 years and used by ≈350 treatment centers. Free p.d software is compatible with most commercial TPS.
- PBRA and eMC algorithms are sufficiently accurate for bolus ECT; PBA algorithms are marginally accurate for some sites.
- Primary impediments to bolus ECT are lack of equitable billing codes, antiquated TPS tools, and IMXT.
- Future electron intensity modulators should improve PTV dose homogeneity.

Summary

Personalized Electron Beam Therapy Using Custom Treatment Devises

- Electron therapy can offer significant advantages, particularly for normal tissue sparing and reduced risk of 2° cancers (poor man's proton beam).
- Many tools (collimating inserts, skin collimation, eye shields, conformal bolus, and accurate dose calculations) exist for delivery of highly personalized electron therapy.
 - Most tools are commercially available
 - Treatment planning systems have failed to provide software that easily manages such tools and accurately calculates dose in their presence.