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Outline

* Machine learning in medicine 101

* Image analysis & radiomics with machine learning
* Image analysis in gastrointestinal tract.
e Liver cancer imaging and analysis.
 Brain tumor RT.

© Machine learning and autopiloted and/or knowledge-
based treatment planning

e Clinical studies

¢ Future outlooks and trends
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with deep neural networks
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Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva's, Brett Kuprel's, Roberto A. Novoa™, Justin Ko’, Susan M. Swetter'*, Helen M. Blau® & Sebastian Thrun*

v Oy coneane e e g b

L -

Figure1| . (for example. lentigo

‘deep CNN. Data flow is from left to right: an image of a skin lesion melanoma)

(for exampl for example, the
& ption  class of melanomsas). The probability of an inference clas is calculated by

VICN 28 million ing 01

Images over 1,000 generic object classes) and fine-tuned on oar awn structure (see Methods). Inception v3 CNN architecture reprinted

dataset of i googlebi your own.image

The 757 classifer-seith haml

L

Dermatologist-level classification of skin cancer
with deep neural networks
Andre Esteva'*, Brett Kuprel's, Roberto A. Novoa™, Justin Ko?, Susan M. Swetter’*, Helen M. Blau® & Sebastian Thrun®

Iii

Pigue: perte 2
“The deep esring OO0 i The AUC
el o
rmoncupis g Ot
For ach e, Ot o, Epsdornsl
oy wt
Sesiga e, A secont
peganve e,
The
b The decp ecning
3,21
ddancees
i garey prohabiny P per age We 5 threbeld bbby | P




JAMA | TH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs

Varun Gushan, PO; Lly Peng, MO, PO: Marc Coram, PhO; Martin C. Stumpe. P Derek W, B5: Arunachalam Narayanaswamy, FhO.
‘Subhashini Venugopalan, MS: Kasumi Wider, MS: Tom Madars, MEng: Jorge Cuadros, 00, PRO: Ramasarmy K, 00, ONG:
Raj Raman, M5, DNE: P C. Nelson, BS; Jessica L. Mega, MO, MPH: Dale . Wesster, D
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ML for Medical Image Analysis
* Images are data!
¢ Imaging is one of the first choices for clinical diagnosis
* 70% clinical decisions depend on medical images

Molecular
imaging
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Clinical Application

Segmentation of organs-at-risks in head and neck CT images using
convolutional neural networks
Bulat Ibragimov* and Lel X
Department of Radistion On

(Received 2 May 2016; revised 31 October 2016 accepted for publication 23 November 2016;
published 13 February 2017)

. Stanfond Univwriey School of Medicine, Stanford, Calffornia %4305, USA

Purpose: Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of
radiation therapy for head and neck (HaN) cancer treatment. I the work, we proposed the first deep
learning-based algorithm, for segmetation of OARs in HaN CT images, and compared its perfor
‘mance against state-of-the-art sutomated segmentation algorithms, commercial software, and merob-
server variability.
Methods: Convolutional neural networks (CNNs)—a concept from the field of deep learing—were
sl u\.e, consisteot intensity patterns of OARs from training CT images and o segment the OAR
fously unscen test CT image. For CNN training, we extracted a representative mumber of posi-
tive mw:muy patches around voxels that belong t0 the OAR of interest i training CT images, and neg-
ative intensity patches around voels that belong o the surrounding structures. These paiches then
passed through a sequence of CNN layers that captured local image features such as comers, end-
points, and cdges, and combined them intn. mowe. cmnlex hioh-ceder features that can effciently
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Convolutional neural networks for segmentation
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Clinical Application
Image database
72 pre-treatment CT images:

* PV with contrast

« Stents

« Tumors are
close to PV

B Ibragimov et al, submitted;“goﬂ

Axial Sagittal Coronal

o

e

Central liver toxicity - B. Ibrimbrovy, D. Toesca, A Koong, D. Chang, L XIng

Irradiation of hepatobiliary tract
will likely result in central liver
toxicity if the isotropic 15mm
expansion of portal vein (PV)
receives:

* VBep1030 > 45 cc
* VBep1040 > 37 cc

Can we predict such toxicity
without manually annotating
portal vein?
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Clinical Applications

Diagnosis Treatment planning Prognosis

Predicted lesion size

Survival probabiliy

[~ Low
—High | pvalue = 0.016

o 10 2 2 &
Survival (mon)

Lung Cancer
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ML for Medical Image Analysis

Variability Large scale
= Magnetic Resonance Imaging = MRI images 1000+
= Computed Tomography = CT images 1000+

= Ultrasound

= Endoscope images 50K+
= Endoscope images

Heterogeneity

= Different appearances = Clinicians’ experience
= Characteristics vary in = Time-consuming and
different modalities tedious

Subjective

* Machine learning with hand-crafted features E

Input Feature Learning
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Object
detection

Image
classification
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Research on Medical Image Analysis— = ===
Integrative Biomedical
Image Analysis
[ |

Prostate & Brain

Diseases in Liver Cancers with
5 A 3 Cancers with MRI
Gastrointestinal Tract CT images
images
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Diseases in Gastrointestinal Tractr/

* Importance
o Gastrointestinal (GI) tract - 30 feet long structure
 2nd commonest cancer

Number of Americans diagnosed every
year with Gastrointestinal Cancers
Colon and Rectal (NG
Pancreatic I ¢
Liver NN
Stomach I >
Gallbladder
Small intestine W =«

Small
intestine

Rectum

Appendix

Wireless Capsule Endoscopy (ch—)’/

* Wireless capsule endoscopy
¢ Introduced by Iddan et al. in 2000

¢ Approved by the U.S Food & Drug
Administration in 2001

* 11x26mm

¢ Examination procedure
» Swallowed by patients
e Propelled by peristalsis

¢ Send images to data-recording
device

e Downloaded for reviewing
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IHustration of WCE ==

Research on WCE

To automatically recognize abnormality for clinicians

WCE Video
Frames
Polyp Ulcer Bleeding Normal
Frame Frame Frame Frame

Polyp Recognition in WCE Images |

= Proposed method: improved bag of words for polyp detection
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= Experiment results
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SIFT+CLBP SIFT+HOG

Yuan et al. "Improved Bag of Feature for Automatic Polyp Detection," IEEE Transactions on Automation
Science and Engineering (TASE), 2016.
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@) Saliency map fusion
acrass muiple levels | [Sienes wmap fusion
of texture and color
saliency maps

[ Final satiency )

@) Uleer & normal
imges

[WCE mages | MultHleve superpixel |
L T representation

= Experiment results for saliency detection

Original images MSSS SDSP Ground truth
FT CA GBVS MSSS SDsP Ours Ground truth




= Experiment results for saliency detection

Precision

7/31/2017

= Proposed ulcer recognition method

= \ / Locality-constrained Linear Coding (LLC)

SIFT code dHOM; code_ duniLBF cude

[ -

= Experiment results for ulcer recognition
Comparison with state-of-the-art methods
Methods Accuracy (%) | Sensitivity (%) | Specificity (%)

Lietal., 2009 89.49+0.12 87.06+ 0.38 91.91+0.13

Cha'izsoii? A 9074x007 86.62+ 0.2 94.85:0.15
Eidetal, 2013 | 85.44+018 | 86.03+0.65 84.84+0.4
Yuetal,2014 | 8235:0.93 | 91184005 | 73.53:3.89

ours 0265:123 | 9412247 91.18+0.91

Yuan et al. "Saliency based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis," IEEE Transaction
on Medical Imaging (TMI), 2015.
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= Experiment results

Comparison with state-of-the-art methods

Method Overall Bleeding Polyp Ulcer Normal
Accuracy Accuracy Accuracy Accuracy Accuracy
HW‘;’E? Al 63604242 | 90954260 | 81332471 | 78334108 | 83.56+3.48
Nawarathna | g7 6. 3 54 | 93.33+1.23 | 84.00+202 | 83.33+0.98 | 89.33+203
etal. 2015
Yaz"oi'ea" 80.46+108 | 95244136 | 87.78+1.28 | 83334083 | 90.67+1.06
Ours | 90.78+053 | 97.14+0.21 | 86.84+061 | 8667082 | 9211+0.28

Yuan et al. "Discriminative Joint-feature Topic Models with Dual Constraints for WCE Classification," Accepted by
IEEE Transaction on Cybernetics (TCYE), 2017.

Polyp Recognition with Deep Lea rn'rrrg/
= Experiment results
® Bubbles Acc. ™ Turbid Acc. Clear Image Acc. ® Polyp Acc.
100
80 [
60
40
20
0
Lietal. 2012 Silva etal. 2013 Hwan etal. 2012 Limetal2015 Yuan etal. 2016 Ours
Yuan et al. "Deep Learning for Polyp Recognition in Wireless Capsule Endoscopy Images," Medical
Physics, 2017.
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Liver Lesion DetectionLem

= |mportance
= Important functions
= 4" common lesion in the world
= Computed Tomography (CT) scans

= Challenges
= Low imaging resolution (=1 X 1 X 1mm3)
= Complex structure information
= Some lesions are small

= Vessels exist in the liver

= Our solution
= Segment the liver — detect liver lesion

7/31/2017
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Liver Segmentation

= Proposed method: superpixel-based boundary-sensitive
convolutional neural network (SBBS-CNN)

Stanford University

7/31/2017

= Experiment results

Stanford Univ

SAE

Liver Lesion Detection

= Proposed method: Two-stage saliency model with modified

emove vessels: high
omogeneity and

Final gray level
saliency map

Multi-scale
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Stanford University

——

Final
i

12



7/31/2017

l Liver Lesion Detection —

= Experiment results

Images ITTI GBVS SLTA

l Liver Lesion Detection -

= Experiment results

0 01 02 03 04 05 06 07 08 09 |

Recall

Yixuan Yuan, et al. " Liver Lesion Detection based on Two-Stage Saliency Model with Modified Sparse
Autoencoder,” Accepted by MICCAI 2017

Stanford University

Prostate Cancer Classification =

® Importance
= Different cancer levels (gleason score) lead to different therapy
= Reduce the core needle biopsy

= Modality for diagnosis
= Magnetic Resonance Imaging (MRI)

T2-weighted images  T2-weighted images ~ Apparent Diffusion T1-weighted
(transaxial) (sagittal) Coefficient images Contrast images

Stanford University
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Prostate Cancer Classification
= Multi-sequence CNN architecture

Class 1
View Class 2
Class 5

Different MRI sequences Multi-Sequence CNN architecture  Output Class Prediction

Stanford University

Prostate Cancer Classification

= Multi-scale CNN

L 32+32

R(y;=cll;:6)

F?(Y,:Cll,:ﬁj)>®—’
: Ry =cl1;:6) Five categories |
L 16%16 /

= Experiment results

Comparison with different methods
Method Accuracy Precision Sensitivity

Traditional

83.69+242| 90.95+2.60 | 81.33+4.71
features

SAE 87.62+1.24| 93.33+1.23 | 84.00+2.02

Multi-scale | 89.46+1.08 | 95.24+1.36 | 87.78+1.28

Multi-
sequence

90.78+0.53 | 97.14+0.21 | 86.84+0.61

Yixuan Yuan, et al. AAPM 2017 Challenge

Stanford Uni \
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Prognostic Imaging Biomarkers
in Glioblastoma: Development and
Independent Validation on the Basis of
Multiregion and Quantitative Analysis
of MR Images’

i
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o 11 610 Pupeses  To develop ani independently validace prognasic imaging
! biomarkers for predicting survival in patients with. glio-

Stunsuka Terdsaka, MD, PID blastama on the basis of multiregion quaniitative imoge

Shigenu Yamagueh, MO, D

analysis.

JeTWang, BA

Koheue Kuco, WD, Pri) Materialsand  This retrospective study was spprived by the local insti-
Lai Xing, PhD ‘Methods: tutional review board, and informed consent was waived.
Hiroid Snirgin, MD, PAD A ttal of 79 patients from two independent

Ruiiang LL P included. The discovery and validation coborts consisted of

46 and 33 patients with glichlustorn from
asine Archive (TCIA snd the local institution. resoestivelv.
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Radiztion Therapy workiow

Modeling Treatment planning Pt setup and

treatment delivery
Imagi

* Automation
* Artificial intelligence

+ Data, imaging, image guidance & integration

Machine Iearnihg 101
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Machine learning 101

7/31/2017

Artificial Intelligence (Al)-Based Non-Coplanar
Rotational Arc Trajectory Design

1. Selection 2. Expansion

A
AR

couch angle

it 480 135 90 45 0 45 %0 135 180
gantry angle

Work supported by a Faculty Research Award from Google Inc.

TensorFlow framework for machine learning
(Google, 20m1)

560 v

16



TensorFlow

B Google open-sourced API (Python, C++)
B Expressing large-scale machine learning algorithms
B Implementation for executing such algorithms

B Heterogeneous execution (E.G., mobile phones, CPU,
multi-GPU)
B Flexible modeling and parallelism for deep neural networks

B Powerful visualization tool (Tensorboard)
B Tracks the graph evolution and model statistics

Abadi, Martin, et al. "Tensorflow: Large-scale machine learing on heterogeneous distri 3
arXiv preprint arxiv:1603.04467 (2016).
@ Stanford | radiation Oncology Stanford | <tRING
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RADIOMICS AND RADIOGENO!
Technical Basts and Clinical Applicat

Oveated Ot Agei 200y
vt Cageer .

BIG DATA % RADIATION ONCOLOGY

[E——
Dt Oune, ey 7
Ot Crpir July 2007

Edvetdy

@ Stanford | radiation Oncology
MEDICINE

Medical Physics

Future Work : =

Medical Image Analysis
- = Feature extraction with domain knowledge
\ = Multi-modalities data analysis

= Deep learning application and modification

Biomedical Informatics

= High-level semantic feature extraction
= Feature fusion with image features

= RNN application

Provide automatic
accurate diagnosis,
treatment planning
and prognosis in
health care

Medical Videos
= IGRT
E = 3D reconstruction
1 = Surgical navigation
= Precision localization / Medical SLAM

Stanford Uni
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Future Work ——

— Big imaging data in medicine

Stanford University

7/31/2017
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