

Disclosures

- The Department of Radiation Oncology at Stanford University Hospital has a research agreement with Varian Medical Systems.
- Technology License Agreement with Varian. Dr. Lei Xing has received speakers honoraria from Varian.
- Dr. Lei Xing serves as advisory scientist in HuiyiHuiying Inc, MoreHealth and Zap Surgical.
- Research grants supports from NIH and Google

Outline

- Machine learning in medicine 101
- Image analysis & radiomics with machine learning
 - Image analysis in gastrointestinal tract.
 - Liver cancer imaging and analysis.
 - Brain tumor RT.
- Machine learning and autopiloted and/or knowledgebased treatment planning
- Clinical studies
- Future outlooks and trends

Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteval*, Brett Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶ 1*, Roberto A. N

ult, do not ger

copy and ca parisons to image-based classification ion v3 CNN architecture⁸ that was pre-illion images (1,000 object categories)

2 FEBRUARY 2017 | VOL 542 | NATURE | 115 ID 2017 Macmilian Publishers Limited, part of Springer Nature. All rights reserved.

Figure 1 | Deep CNN layout. Our cl feep CNN. Data flow is from left to 1ple, melanoma) is sequentially warped into a p ion over clinical classes of skin disease using Ge architecture pretrained on the ImageNet datase ver 1,000 generic object classes) and fine-tuned g Google Ince taset (1.28 mil ned on r3 CNN ar comprising 2,032 ined using a nove at maps diseases i of 129.450 alg

Images are data!

- Imaging is one of the first choices for clinical diagnosis
- 70% clinical decisions depend on medical images

Diseases in Gastrointestinal Tract

Importance

- Gastrointestinal (GI) tract 30 feet long structure
- 2nd commonest cancer

• Downloaded for reviewing

eriment resu	lts for ulcer i	recognition	
Cor	nparison with sta	te-of-the-art meth	nods
Methods	Accuracy (%)	Sensitivity (%)	Specificity (%)
Li et al., 2009	89.49±0.12	87.06± 0.38	91.91± 0.13
Charisis et al., 2013	90.74± 0.07	86.62±0.2	94.85± 0.15
Eid et al., 2013	85.44 ± 0.18	86.03± 0.65	84.84 ± 0.4
Yu et al., 2014	$82.35{\pm}0.93$	91.18 ± 0.05	73.53± 3.89
Ours	92.65±1.23	94.12± 2.47	91.18 ± 0.91

Yuan et al. "Saliency based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis," IEEE Transaction on Medical Imaging (TMI), 2015.

ulti-abnormalities Classi

Experiment results

Comparison with state-of-the-art methods

Method	Overall Accuracy	Bleeding Accuracy	Polyp Accuracy	Ulcer Accuracy	Normal Accuracy
Hwang et al. 2013	83.69 ± 2.42	90.95 ± 2.60	81.33 ± 4.71	78.33 ± 1.08	83.56 ± 3.48
Nawarathna et al. 2015	87.62 ± 1.24	93.33± 1.23	84.00 ± 2.02	83.33 ± 0.98	89.33 ± 2.03
Yao et al. 2016	89.46 ± 1.08	95.24 ± 1.36	87.78 ±1.28	83.33 ± 0.83	90.67 ± 1.06
Ours	$\textbf{90.78} \pm \textbf{0.53}$	$\textbf{97.14} \pm \textbf{0.21}$	$\textbf{86.84} \pm \textbf{0.61}$	$\textbf{86.67} \pm \textbf{0.82}$	92.11 ± 0.28

Yuan et al. "Discriminative Joint-feature Topic Models with Dual Constraints for WCE Classification," Accepted by IEEE Transaction on Cybernetics (TCYE), 2017.

Stanford Univers

-

Prostate Cancer Classification

- Importance
 - Different cancer levels (gleason score) lead to different therapy
 - Reduce the core needle biopsy
- Modality for diagnosis
 - Magnetic Resonance Imaging (MRI)

Stanford University

Prostate	Prostate Cancer Classification						
 Experin 	Experiment results						
	Co	mparison with	n different metl	nods			
	Method	Accuracy	Precision	Sensitivity			
	Traditional features	83.69 ± 2.42	90.95 ± 2.60	81.33 ± 4.71			
	SAE	87.62 ± 1.24	93.33± 1.23	84.00 ± 2.02			
	Multi-scale	89.46 ± 1.08	95.24 ± 1.36	87.78 ±1.28			
	Multi- sequence	90.78 ± 0.53	97.14 ± 0.21	86.84 ± 0.61			
Yixuan Yuan, et al. AAPM 2017 Challenge							
				St	anford University		

Radiation	Therapy worl	kflow		
Modeling	Treatment planning	Pt setup and treatment delivery		
Automation Artificial intelligence Data, imaging, image guidance & integration				

Mechanical Eng

