

Photon Optimization with GPU and Multi-Core CPU; What are the issues?

Arezoo Modiri, PhD

Outline

- Parallelization
 - CPUs/Clusters/Cloud/GPUs
 - Data management
- Computation-Intensive Applications in Photon Radiotherapy
 - Dose calculation
 - Image registration/reconstructionRobustness analysis
 - Robustness analysis
 Higher-dimensional inverse planning
- Through an Example (4D IMRT Inverse Planning)
 - Hardware configuration
 - Factors impacting process speed

Disclosure

This work was supported in part by the National Cancer Institute (R01CA169102) and Varian Medical Systems.

Why is parallelization important?

Radiotherapy applications

use large data sets and/or complex numerical algorithms.

are desired to be solved in a timely fashion.

are sometimes desired to be solved in minutes or even in (near) real time, such as on-line adaptive radiation therapy (ART).

Solutions for Speeding Up Processes

· Using devices with higher clock speed (we are hitting a technological limit)

Using devices supporting parallel processing (multi-core CPUs and GPUs)

on therapy, Jia et al., PMB 2014

Solutions for Speeding Up Processes

- Using devices with higher clock speed (we are hitting a technological limit)
 Using devices supporting parallel processing (multi-core CPUs and GPUs)
- Managing data for parallel processing
 The size of the data can be large. Yet, data are usually parallelization-friendly,
 in that the entire task can be naturally broken down to small operations at
 pixel/voxel/beamlet/aperture/etc. level.

- Most works use single-precision float point data type.

- Down sampling, reducing calculation volume and sparsification can be used to manage data.

Solutions for Speeding Up Processes

- Using devices with higher clock speed (we are hitting a technological limit)
 Using devices supporting parallel processing (multi-core CPUs and GPUs)
- Managing data for parallel processing

 The size of the data can be large. Yet, data are usually parallelization-friendly, in that the entire task can be naturally broken down to small operations at pixel/voxel/beamlet/aperture/etc. level.
 - Most works use single-precision float point data type.
 - Down sampling, reducing calculation volume and sparsification can be used to manage data.
- Intermediate-size data: A GPU solution
- Large-size data: A CPU solution

PU-based high-performance computing for radiation therapy, Jia et al., PMB 2014

GPUs versus CPUs

CPUs	# Cores	Clock Speed (GHz)	Maximum memory (GB)		Single- preci performance		Double-precision performance (TFLOPS)	Memory bandwidth
Intel Xeon E7 8893 v3	8 (Multi- threading)	3.2/3.5	1540		0.448		0.224	~200-400GB/s
AMD EPYC [™] 7601	32	2.2/3.2	2000		0.409		0.204	
GPUs	# Cores	Clock Speed (GHz)	Maximum memory (GB))	Single- preciperformance		Double-precision performance (TFLOPS)	
Radeon Instinct [™] MI25	4096	1.5	16		12.3		6.15	1
NVIDIA Tesla P100	3584	1.33-1.48	16		10.6		5.3	~700GB/s
								-
Coprocessors	# Cores	Clock Speed (GHz)	Maximum memory (GB)		Single- prec performance		Double-precision performance (TFLOPS)	
Intel Xeon Phi 7290	72	1.5	16		6.92		3.46	~115GB/s
							Arezoo Modiri	5
http://ark.intel.com/products84688/ http://ank.and/in/Bean.umanyland.edu/ http://ank.intel.com/products84688/ Department of Radiation Oncology http://instrict.radiao.com/en-unstricts/adeon-instrincs-mi25/ University of Maryland, Batimore								

Cloud-based Clusters

Reviews of GPU-based Computation in Radiotherapy

GPU Computing in Medical Physics, Lei Xing et al., Med. Phys. 2011 GPU-based high-performance computing for radiation therapy, Xun Jia et al., PMB 2014

Computationally Intense Radiotherapy Applications

Dose calculation

esy – Lei Xing – Stanford Un

- Image registration/reconstruction
- Plan optimization
- · Robustness analysis

Computationally Intense Radiotherapy Applications

Optimization
 Correction Step
 Others

Depending on data size, registration may take less or more time compared to plan optimization (from our group's study).

eh- Memorial Sloan K

Computationally Intense Radiotherapy Applications

Superposition/convolution
Monte Carlo

Treatment planning systems

Monte Carlo Dose Calculation

GPU-based MC project at UT Southwestern

Clinical Application of MC Dose Calculation

Courtesy - Xun Jia - UT Southwestern

Including imaging dose in optimizationTreatment monitoring/verification

Dose Calculation Efficient MC Implementation

 Instead of calculating dose deposition matrices for all beamlets using MC prior to optimization, dose calculation is performed inside optimization loop but number of particles for MC is optimized.

A new Monte Ca

Optimized fluence map with 1 \times 10 $^{\rm c}$ / beamle and 1 \times 10 $^{\rm 4}$ / beamlet/iteration (4x accelerat

 The computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.

ion	Start
Г	1a) Determine particle number for each beamlet
	1b) Beamlet dose calculation
	1c) Accumulate beamlet dose
	2. Plan optimization
L	No Stopping criteria met?
	Yes End
	14
	Arezoo Modiri amodiri @som.umaryland.edu Department of Radiation Oncolog

Dose Calculation Hardware-Independent Implementation

 In terms of efficiency, goMC was ~4–16% slower than gDPM when running on the same NVidia TTTAN card for all the cases tested, due to both the different electron transport models and the different development environments.

 AMD GPU cards are faster for OpenCL applications.

Dose Calculation Hardware-Independent Implementation

It is quite straightforward to port an existing CPU algorithm onto GPU and achieve acceleration to a certain degree. It is, nonetheless, quite challenging to write a high-efficiency code that fully exploit the potential of a GPU.

MC Imaging Photon-Electron Simulation

- GPU implementation of the photon transport mechanism of EGSnrc
 Speedups of 20 to 40 times for 64^3 to 256^3 voxels were observed

MC Particle Transport Simulation

Cast Global memory Texture memory Stervel memory generative memory generative memory B Reddynamy 5.56.6 3.792 2.121 0.761 2 B Reddynamy 5.26.6 3.792 2.121 0.761 2 Photo insurption 0.292 0.234 0.198 0.060 3 Photo memory texture Texture Neuroscientistic 100 3 Photo memory texture texture Value Value 3 Concerve texture texture texture Value 3 Concerve texture texture texture texture 3
3 photon transport 1
Coupled destron- photon transport Table 3. Comparison of transport simulation time with the auxiliary index array shared memory. Parameterized geometry Voxelized
Parameterized geometry Voxelized
Brachytherapy 0.614 0.761
Coupled 0.105 0.060 electron-photon transport

Robustness Analysis Determining the geometric uncertainties effects on the quality of the RT plans is computationally expensive and RT Data RT Plan RT demands high performance computation capabilities. An in-house radiation therapy robustness analyzer (RTRA) 0 🎉 🚺 🚯 🛹 (h) Simulates uncertainties due to: Daily patient setup error Deformable body motion Delineation uncertainties rtesy – Hamid Nourzadeh – University of Virginia ical adequacy assessment of autocontours for pr

Higher-Dimensional Inverse Planning

- IMRT Ziegenhein et al., PMB 2013; Men et al., PMB 2009
- VMAT Tian et al., Med. Phys. 2015; Chin et al., Med. Phys. 2013
 Increased degrees of freedom in planning
- 4D Nohadani et al., PMB 2010; Suh et al., PMB 2009
- 4π Chiu et al., Med. Phys. 2016; Dong et al., RED 2012 TORUS Locke et al., Med. Phys. 2017

An Example: 4D IMRT Inverse Planning

et al., University of Maryland

The pipeline for our work consisted of (i) creating treatment plans for each phase in Eclipse 13.6 TPS, (ii) exporting dose-deposition matrices for all (tens of thousands) apertures, (iii) optimizing aperture MU weights using GPU-based in-house optimization.

For 4D dose summation, we used a GPU-enabled deformable image package (Elastix).

An Example: 4D IMRT Inverse Planning

An Example: 4D IMRT Inverse Planning

An Example: 4D IMRT Inverse Planning

More details on this study will be presented at
 Thursday, Session# TH-CD-205-4

GPU-accelerated Higher-Dimensional Inverse Planning, Hagan et al., University of Maryland

Other Applications

- B Real-time Monte Carlo based Treatment Dose Reconstruction and Monitoring
- ¹⁵ DVH-guided IMRT and VMAT auto- and adaptive-planning
- a Algorithms for micro- (small operations in parallel) and macro- (large operations) parallelization being designed
- 8 Biological endpoint calculation using Monte Carlo
- n Radiomics and artificial intelligence
 - ⁿ Problematic lymph node identification
 - s Organ-at-risk labeling given contours

Courtesy - Troy Long - UT Southweste

Conclusion

GPU implementation has enabled various radiotherapy applications being processed in minutes or even seconds.

Data size is an important factor in choosing hardware configuration.

Optimal number of GPUs is not necessarily equal to maximum number of GPUs available.

The implementation technique and process time are hardware dependent.

The choice and design of algorithms are important in parallelization and avoidance of thread divergence.

Department of Radiation Oncolog

Thank you. Questions?

Backup Slides

An Example: 4D IMRT Inverse Planning

 To conserve GPU memory, we used the Compressed Column Row sparsification (10:1 compression ratio). An open-source deformable image registration (Elastix), was employed for dose summation. To avoid deforming tens of thousands of dose matrices, we applied deformation vector fields, calculated prior to optimization, to summed dose matrices inside iteration loop. For evaluation, several 4D-IMRT planning tests were performed on patient data, considering 10 phases, 9 beams, 166 apertures (14940 variables).

• A typical 10 phase, 200 particle study would equate to 2000 DIR operations in parallel. For a typical patient with each dose matrix being 18.7 MB in size, this would equate to 37.4 GB of dedicated GPU memory that would need to be allocated by elastix.

METHODS

Our implementation is distinct from existing 4D planning applications in commercial (i) it is not based on internal target volume generation, (ii) it optimizes across phases and not for each phase, individually,

(iii) particle swarm optimization is used to solve an inverse plan optimization consisted of dose-volume-based objective function, and (iv) aperture MU weights are optimized not fluence.

METHODS

The pipeline for our work consisted of (i) creating treatment plans for each phase in Eclipse 13.6 TPS, (ii) exporting dose-deposition matrices for all (tens of thousands) apertures, (iii) optimizing aperture MU weights using GPU-based PSO, implemented in-

house.

Aaron Hagan Department of Radiation Oncolo University of Maryland, Baltimore

METHODS

For 4D dose summation, we used a deformable image package (Elastix). Due to GPU memory limitations, we needed to use the data in chunks and spread the tasks between GPUs and CPUs.

GPU versus CPU

NVIDIA Pascal
3584
5.3 TeraFLOPS
10.6 TeraFLOPS
21.2 TeraFLOPS
16 GB CoWoS HBM2
732 GB/s
NVIDIA NVLink
300 W
Native support with no capacity or performance overhead
Passive
SXM2
NVIDIA CUDA, DirectCompute, OpenCL [™] , OpenACC

- High computational power, small size, low maintenance cost
- · Single instruction multiple data

	# Cores	Clock speed (GHz)	Memory size (max) (GB)	Efficiency (GFLOPS W ⁻¹)	Memory bandwidth (GB s ⁻¹)	Single precision performance (GFLOPS)	Double precision performance (GFLOPS)
Intel Xeon	8	3.1/3.8	750	1.4	51.2	486	243
E5-2687 W NVIDIA GPU K20	2688	0.732	6	16.80	250	3520	1170

Outline

Why is parallelization important?	
Dose calculation	
Inverse plan optimization	
Offline processes versus online/real-time/on-the-fly processes	
Fluence optimization versus aperture weight optimization	
Dealing with large number of variables in IMRT, ARC treatment planning or in 4E fractionation treatment planning	D and non-uniform-
What is the impact of data size?	
GPU memory	
Downsampling versus keeping original data size	
Sparcification	
Computationally expensive processes; e.g., deformable image registration	
Staying Compatible with existing treatment planning systems	
Solver and algorithm matter.	
Dealing with non-convexity: DVH-based goals, BED-based goals	Arezoo Modiri amodiri@som.umaryland.edu
Using global versus Local optimization	Department of Radiation Oncology University of Maryland, Baltimore

Dose Calculation

Courtesy – Yongbao Li et al. – UT Southwestern

Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Penci-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plant quality.
To solve this problem, the Monte Carlo (MC) simulation method has been used to
compute all beamlet doses prior to the optimization step. The conventional approach
samples the same number of particles from each beamlet. Yet this is not the optimal
use of MC in this problem. In fact, there are beamlets that have very small intensities
after solving the plan optimization problem. For those beamlets, it may be possible to
use fewer particles in dose calculations to increase efficiency. Based on this idea, we
have developed a new MC-based IMRT plan optimization framework that iteratively
performs MC dose calculation and plan optimization. At each dose calculation step, the
particle numbers for beamlets were adjusted based on the beamlet intensities obtained
through solving the plan optimization problem in the last iteration step. We modified a
GPU-based MC dose engine to allow simultaneous computations of a large number of
beamlet doses. To test the accuracy of our modified dose engine, we compared the
dose from a broad beam and the summed beamlet doses in this beam in an
inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55%
for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that conventional scheme
required 106 particles from each beamlet to achieve an optimization result that was 3%
difference in fluence map and 1% difference in dose from the ground truth. In contrast,
the proposed scheme achieved the same level of accuracy with on average 1.2 × 105
particles per beamlet. Correspondingly, the computation time including both MC dose
calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s.

amodiri @som.umaryland.edu Department of Radiation Oncolo University of Maryland, Baltimor

Figure 19. DVHs comparison between the original plan from Ridger (Anted line), the excitcaland plan with MC (dashed line) and the plan optimized with the proposed method isolid line) for (a) provide one, (W) BSN one and (c) ling one.

Courtesy - Yongbao Li et al. - UT Southwestern

Dose Calculation

Notes Carlo (MC) simulation has been recognized as the most account does includation motifs of reachistings. However, the attempt (v) opcompatibility in the chiral application. Reserving a large of the chiral application of the second provided in the chiral application of the chiral application of the second provided in the chiral application. Note the photometry of the second provided in the chiral application of the second provided in the second provided in the second application of the second provided in the second provided provided in the second provided provided in the second in the second provided in the the second provided in the second provided in the second provided in the second provided in th

> amodiri @som.umaryland.edu Department of Radiation Onco University of Maryland, Baltim

Figure 5. co. As example presents, the The Inter of

GPU-ba

Physic

Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy

13

Figure 8. (a) Does is water for the distribution protons of the distribution of the distrebutica of the distribution of the d

Paper 5, co As comple presenty, the The tree at

Alle

GPU-bi

Yujie Chi, Zhen Tian and Xun Jia

Department of Radiation On Dullas, TX 25390, USA

Monte Carlo (MC) particle transport simulation on a graphics-processing unit (C platform has been extensively studied recently due to the efficiency advantage via massive parallelization. Amout all of the existing GPU-based MC packages developed for voxelized geometry. This limited application scope of these pack. The numerover this pager is to develop a module to model parametric seemetr

incorporated to twi two example proble case with a whinter

on for radiotherapy, Yujie Chi et al., 2016

resp VS 2

compu We als

 Label Constraint
 Label Constraint

 Name
 Name
 Name

 Nam
 Name
 Name

Carlo particle transport simu

Department of Radiation One University of Maryland, Baltin

Medical Physics

Dose Calculation

An ultra-fast Monte Carlo dose engine for High-dose-rate brachytherapy

