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Photon Optimization with GPU and Multi-
Core CPU; What are the issues?

Arezoo Modiri, PhD

Outline

Parallelization
= CPUs/Clusters/Cloud/GPUs
= Data management

Computation-Intensive Applications in Photon Radiotherapy

Dose calculation

Image registration/reconstruction
Robustness analysis
Higher-dimensional inverse planning

Through an Example (4D IMRT Inverse Planning)

+ Hardware configuration 1

Factors impacting process speed e
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Why is parallelization important?

Radiotherapy applications

use large data sets and/or complex numerical algorithms.

are desired to be solved in a timely fashion.

are sometimes desired to be solved in minutes or even in (near) real time, such
as on-line adaptive radiation therapy (ART).
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Solutions for Speeding Up Processes

+ Using devices with higher clock speed (we are hitting a technological limit)
* Using devices supporting parallel processing (multi-core CPUs and GPUSs)
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Solutions for Speeding Up Processes

Using devices with higher clock speed (we are hitting a technological limit)
Using devices supporting parallel processing (multi-core CPUs and GPUs)
+ Managing data for parallel processing

— The size of the data can be large. Yet, data are usually parallelization-friendly,

in that the entire task can be naturally broken down to small operations at
pixel/voxel/beamlet/aperture/etc. level.

— Most works use single-precision float point data type.

— Down sampling, reducing volume and

can be used to manage data.
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Solutions for Speeding Up Processes

Managing data for parallel processing

— The size of the data can be large. Yet, data are usually parallelization-friendly,

in that the entire task can be naturally broken down to small operations at
|

pixelivoxel/beamlet/aperture/etc. level.

— Most works use single-precision float point data type.

— Down sampling, reducing

volume and

Using devices with higher clock speed (we are hitting a technological limit)
Using devices supporting parallel processing (multi-core CPUs and GPUs)

ion can be used to manage data.

Intermediate-size data: A GPU solution
Large-size data: A CPU solution

Jiaetal., PMB 2014

GPUs versus CPUs
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Clusters

+ Expensive (setup and maintenance)

« Performance dependency on

number of users

« Citrix is an example

* Rocuest w rvsponme flow
Bmdings

=@

CcPUS #Cores | Clock Speed (GHz) | Maximum Single- precision Double-precision Memory
memory (GB) | performance (TFLOPS) | performance bandwidth
(TFLOPS)
Intel Xeon £78893v3 | 8 (Vult- | 32135 1540 0.448 0224 ~
threading) | 200-400GBIs
AMD EPYC™ 7601 32 2232 2000 [ [oas | 0.204
GPUS #Cores | Clock Speed (GHz) | Maximum Single- precision Double-precision
memor performance (TFLOPS) | performance (TFLOPS)
Radeon Instinct™ MI25 [ 4096 15 16 123
NVIDIA Tesla P100 3584 1.33-1.48 16 | 106 5.3 ~700GB/s
|
Coprocessors #Cores | Clock Speed (GHz) | Maximum single- precision Double-precision
memory (GB) | performance (TFLOPS) ance
(TFLOPS)
Intel Xeon Phi 7290 | 72 15 6 1= ] 346 -~115GBIs
1
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Citrix Load Balancing Process
Pitps:/wwcitrx.com brfglossary/load-balancing hml 8
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Cloud-based Clusters

Outsourcing computation resources to a 39 party company (Amazon, google, etc.)

. prowser enabling a user to
view DICOM-RT file.

. Performs computing tasks
(registration, segmentation,
treatment planning, dose

calculation)
- Data base
Need to pay per hour|
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Reviews of GPU-based Computation in Radiotherapy

GPU Computing in Medical Physics, Lei Xing et al., Med. Phys. 2011
GPU-based high-performance computing for radiation therapy, Xun Jia et al., PMB 2014
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Computationally Intense Radiotherapy Applications

Dose calculation

Image registration/reconstruction

Plan optimization

Robustness analysis
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Computationally Intense Radiotherapy Applications

An Example

Winluence Matris Cal.
moptmiztion

Carvocion Step

ECHO (Expedited Constrained Hierarchical Optimization)

Computational time 1 to 4 hours o
Express the clinical criteria as hard constraints
Prioritize the clinical objectives and optimize them in order
Depending on data size, registration may take less or more time
compared to plan optimization (from our group’s study). o
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Computationally Intense Radiotherapy Applications

Dose calculation techniques
Pencil-beam

Superposition/convolution

Treatment planning systems
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Monte Carlo Dose Calculation

GPU-based MC project at UT Southwestern

2009 2011 2012 2014 2015 2016
gDPM oCTD  gPMC goMC goCMC goMicroMC
gMCDRR gBMC (Carbon-ion ~ (brachytherapy)
therapy)

9: GPU
go: GPU OpenCL

.

Particle types: photon, electron, proton, carbon ion, free radical...

.

Clinical applications: external beam therapy, brachytherapy

.

Energy ranges: eV > keV > MeV > GeV

.

Spatial scales: nm (DNA level) & m (human level)
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Clinical Application of MC Dose Calculation

Dose calculation

Including imaging dose in
optimization

Treatment monitoring/verification
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Dose Calculation
Efficient MC Implementation

+ Instead of calculating dose deposition matrices for all
beamlets using MC prior to optimization, dose calculation is
performed inside optimization loop but number of particles
for MC is optimized.

Offline vs Online 'm u k :’

CT was resampled to .
128 x 128 x 86 voxels.

* The computation time including both MC dose calculations
and plan optimizations was reduced by a factor of 4.4, from w0
494 to 113 s, using only one GPU card. jrezcaliocliy
amodiri@som umaryland.edu
Department of Radiation Oncology
A for therapy, Listal PMB 2015 University of Maryland, Baltimore

E

Optimized fluence map with 1x 10° / beamlet
and 1 10* / beamletiteration (4x acceleration)

Dose Calculation
Hardware-Independent Implementation

« In terms of efficiency, goMC was ~4-16% slower
than gDPM when running on the same NVidia
TITAN card for all the cases tested, due to both
the different electron transport models and the
different development environments.

AMD GPU cards are faster for OpenCL

applications.
Dose calculated by OpenCL and CUDA versions of
the code (first and second rows) and their
comparison (last row).
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Dose Calculation
Hardware-Independent Implementation

Itis quite straightforward to port an existing CPU algorithm onto GPU and achieve
acceleration to a certain degree. Itis, nonetheless, quite challenging to write a high-
efficiency code that fully exploit the potential of a GPU.
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MC Imaging Photon-Electron Simulation

+ GPU implementation of the photon transport
mechanism of EGSnhrc

+ Speedups of 20 to 40 times for 64”3 to -
256”3 voxels were observed ' ’

> Tieads

Thread divergence control
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A GPUimplementation of EGSnrc’s Monte Carlo photon transport for imaging applications, Lippuner et al., PMB 2011 Department of Radiation Oncology.

GPUMCD: anew. Hi etal, Med. Phys. 2011 University of Maryland, Baltimore

MC Particle Transport Simulation

Tabie 2.

« Using parametrized geometry, the
computational time ranged in 1.75-2.03
times of the voxelized geometry for
coupled photon/electron transport
depending on the voxel dimension of the

5546 i 2

8/1/2017

auxiliary index array, and in 0.69-1.23
times for photon only transport.

Algorithmic solutions
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Robustness Analysis

« Determining the geometric
uncertainties effects on the
quality of the RT plans is

computationally expensive and ] | RT Robustness Analyzer 4_{__"“ - |
demands high performance m (RIRA) -

computation capabilities. m

An in-house radiation therapy
robustness analyzer (RTRA)

— Simulates uncertainties due to:
« Daily patient setup error
« Deformable body motion I
+ Delineation uncertainties i

S 19
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Higher-Dimensional Inverse Planning

IMRT zegenneinet . s 201 e et . oy 2000

© VIMAT s s s s . s |_LNCrE2520 degrees of freedom in planning |

AD oncanien . s 2010;sun . v 2009

o 1

TORUS wocceetar v prys. 20 Figure Couresy K Bush ~Stanford Unversiy

ATT chiuetal. ved. phys. 2016, Dong et . RED 2012 Q =
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An Example: 4D IMRT Inverse Planning

The pipeline for our work consisted of
(i) creating treatment plans for each phase in Eclipse 13.6 TPS,
(i) exporting dose-deposition matrices for all (tens of thousands) apertures,
(iii) optimizing aperture MU weights using GPU-based in-house optimization.

e
| Optimization !
| Engine }

For 4D dose summation, we used a GPU-enabled deformable image package (Elastix).
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An Example: 4D IMRT Inverse Planning

Parallelized over phases

Phages
=

Vatlables

Partcles

Search agents in particle swarm optimization

Hagan et al, University of Maryland

« Commercial TPS

« In-house tools

Deformable image registration:
+ Open source packages
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An Example: 4D IMRT Inverse Planning

Parallelized ovel

Phases,

r phases

vanasles|

=

Partcles

Hagan et al, University of Maryland

Parallelized over particles

Vaniables

Particle p
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An Example: 4D IMRT Inverse Planning

house Optimization Engine Borory
Doncruscry
T oo
I; 7
Fance 1 Jese] Fance 7 ] e

PancET

matrx over phases

matsover phases ‘

Hagan et al., University of Maryland
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An Example: 4D IMRT Inverse Planning

Our implementation was hardware dependent.
DDR4 DDR4

cPuL 25,6 GBs cpu2
PCIE 3.0x16 32GB/s PCIE 3.0x16 32GB/s
Telsa K80 Telsa K80
12GB of memory available per GPU card
Non-uniform memory access (NUMA) structure e 24
8-core CPUs , 256GB RAM e
Hagan et al, University of Maryland University of Maryland, Baltimore

An Example: 4D IMRT Inverse Planning

Dose matrix size

k=98x59x217, p=50 «————— Number of particles
12
T Total time
£
§
08 - .
2 PSO time
060« N
g
Boar ct ot r ooty
L DIR time - -
0.2
0 2 4 6 8
Number of GPUs
2
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An Example: 4D IMRT Inverse Planning
) k=08 50217, P=50
1
z Total time
E .
& . R
go8 - . We generally use 25-30 iterations.
1 PSO time -
FULTEEEE
g
go4f T _p" v rielso%
= DIR time -
02
0 2 4 8 8
Number of GPUs
25
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An Example: 4D IMRT Inverse Planning

+ More details on this study will be presented at
Thursday, Session# TH-CD-205-4

GPU-accelerated Higher-Dimensional Inverse Planning, Hagan et al., University of Maryland
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Other Applications

= Real-time Monte Carlo based Treatment Dose Reconstruction and Monitoring
v DVH-guided IMRT and VMAT auto- and adaptive-planning
+ Algorithms for micro- (small operations in parallel) and macro- (large

operations) parallelization being designed

Biological endpoint calculation using Monte Carlo

= Radiomics and artificial intelligence
= Problematic lymph node identification

: Organ-at-risk labeling given contours .
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Conclusion

GPU implementation has enabled various radiotherapy applications being
processed in minutes or even seconds.

Data size is an important factor in choosing hardware configuration.

Optimal number of GPUs is not necessarily equal to maximum number of GPUs
available.

The implementation technique and process time are hardware dependent.

The choice and design of algorithms are important in parallelization and
avoidance of thread divergence. Alezo0 Modir

amodiri@som.umaryland.edu
Department of Radiation Oncology
University of Maryland, Baltimore
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Thank you.

Questions?
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Backup Slides

An Example: 4D IMRT Inverse Planning

a0 —==Carical
GE} g Spinal cord - Oplimized)
5 £ 60 X
] ] S
o 7
# ¥
21 PTV : 144 cc
L ot " = Target motion: 1.5 cm
o s 20 50 0 10 20 30
Dose (Gy) Dose (Gy)
Arez00 Modiri
amodiri@som.umaryland.edu
Department of Radiation Oncology
Hagan et al, University of Maryland, NI (ROICA169102) and Varian Medical Systems. University of Maryland, Baltimore
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» To conserve GPU memory, we used the Compressed Column
Row sparsification (10:1 compression ratio). An open-source
deformable image registration (Elastix), was employed for
dose summation. To avoid deforming tens of thousands of
dose matrices, we applied deformation vector fields,
calculated prior to optimization, to summed dose matrices
inside iteration loop. For evaluation, several 4D-IMRT
planning tests were performed on patient data, considering 10
phases, 9 beams, 166 apertures (14940 variables).

+ Atypical 10 phase, 200 particle study would equate to
2000 DIR operations in parallel. For a typical patient with
each dose matrix being 18.7 MB in size, this would
equate to 37.4 GB of dedicated GPU memory that would
need to be allocated by elastix.

5 GPUs , k=196 118217, N=9 s 5 GPUs , k=196x 118217, P=200
-F'SG reo
aning Operator

o

= S |lem [ | .
E)b -Tmal £ ;‘r;l:lnmng pexatos L.
c 54
g4 2 .
o =
23 2 Lo "
5 32 L
a2 @ -
@ E . .
g I II ) c
0 -t .
[ | Il 0 2 4 & 8 10
0 50 mr. 150 200 N

Process time increases both with number of particles and number of respiratory phases.

Aaron Hagan

Department of Radiation Oncology
University of Maryland, Baltimore.

8/1/2017
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An Example: 4D IMRT Inverse Planning

- k=08 59217, P=50 k=196 118x 217, P=200
= * PSO - . = PSO
E 1 . * DR * DR
= = Tol . L= o
& . . 1
508 . Lo .
g wo.
S08F x|
g i
goat * e " 3ie) & 2 i
E P . s e . .
02 0
0 2 4 8 8 ] 2 4 & 8
Number of GPUs Number of GPUs

The optimal number of GPUs (five, in this study) is directly

related to the hardware specifications of employed GPU [l

cards. Department of Radiation Oncology
Modiri et al., University of Maryland, NIH (ROLCA169102) and Varian Medical Systems. University of Maryland, Baltimore

METHODS

Our implementation is distinct from existing 4D planning applications in commercial
TPSs because
(i) itis not based on internal target volume generation,
(ii) it optimizes across phases and not for each phase, individually,
(iii) particle swarm optimization is used to solve an inverse plan optimization
consisted of dose-volume-based objective function, and
(iv) aperture MU weights are optimized not fluence.

Aaron Hagan
Department of Radiation Oncology
University of Maryland, Baltimore.

METHODS

The pipeline for our work consisted of
(i) creating treatment plans for each phase in Eclipse 13.6 TPS,
(ii) exporting dose-deposition matrices for all (tens of thousands) apertures,
(iii) optimizing aperture MU weights using GPU-based PSO, implemented in-
house.

‘7Tr|-hou;e77
| Optimization !
| Engine }

tens of thousands of variables (e.g., in our case study, we
had 9 beams x 166 apertures per beam x 10 sampled
respiratory phases = 14940 variables). 32;1"":11?2. Radiation Oncology

University of Maryland, Baltimore.

8/1/2017
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METHODS

For 4D dose summation, we used a deformable image package (Elastix).

Due to GPU memory limitations, we needed to use the data in chunks and spread the tasks between
GPUs and CPUs.

8/1/2017

In-house Optimization Engine

[—PhaseN
CalEulafing objecive FACTon Scaling sparse]

matrices

Running partiioning Running partiioning
operator operator

No
Aaron Hagan

[Finding Personal Best] [Finding Personal Best|

ReiatoTOmCaloy
University of Maryland, Baltimore.

GPU versus CPU

SPECIFICATIONS

Ty * High co_mputatlona_l power,
. small size, low maintenance
Single-Preciion 10,6 TeraFLopS cost

s e ) ) ) )

FallPrecison 212 Tearlops « Single instruction multiple data
6P Hameny 1668 cowes Hawz e

Memory Bty mazesic

imrcomec AN

Max Power Consumption  300W.

[y
Coroyorperarmance T r—  wmm
prerich e e " ' R u
TrarmaBaiaion i s 0w 6w s ww um
Form Factor SKM2 aru kan
Fe— WoACUDA,
s
OpenCL™, OpenACC
Outline
Why is parallelization important?
Dose calculation
Inverse plan optimization
Offline versus i the-fly

Fluence optimization versus aperture weight optimization

Dealing with large number of variables in IMRT, ARC treatment planning or in 4D and non-uniform-
fractionation treatment planning

What is the impact of data size?

GPU memory

Downsampling versus keeping original data size
Sparcification

Computationally expensiy eg., image

Staying Compatible with existing treatment planning systems

Solver and algorithm matter.

Arez00 Modiri

Dealing with non-convexity: DVH-based goals, BED-based goals amodiri@som.umaryland.edu

S Department of Radiation Oncology
Using global versus Local optimization University of Maryland, Baltimore
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Dose Calculation

e — distbutions.
H
A new Monte Carfo-based treatment cad the optmization
plan optimization approach for intensity
modulated radiation therapy Doamiet Yot thists
e useof MC nfact,
oo e ey g, ater For it may be possileto
e g B Gaseton hi s we
m
teration step. We modiied a
GP o
4 To test ur
dose s b
%hfor
for
] case. I
required
LU In contrast,

average 1.2 x 105

partcles per beamlet,

using onlyone GPU card,

Courtesy — Yongbao Li et al. — UT Southwestern

Dose Calculation

‘A new Monte Carlo-based treatment
plan optimization approach for Intensity
‘modulated radiation therapy

Sorghen U, Trwe i’ Forg 4 T o’
B vaga L s S 2

Courtesy ~ Yongbao Li et al. — UT Southwestern

Dose Calculation

4.4,from 494 10 1135,

Arezoo Modir
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1) Determine particle
number for each beamlet

1e) Accumulate beamilet dese

Stoaping criteria
met?
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ted

Recently,a lotof
MC dose calculation on graphic processing units (GPUS). However, most of the GPU-
c

A GPU OpenCL based cross-platiorm based M Thi
Monte Carlo dose calculation engine U-based
(goMC) mc Py
OpencL with
energy

range. ia
etal 2012 Phys. Med. Biol. 57 7783-97), oMC has two major differences. First, it was

CPU platf d, we adopted
dot
in gDPM. a15 MeV m
phantom,
and o
goMC ‘observed in all
10%
d0.15-0.17% In terms of

i MC was
TITAN card for

avariety of different

‘computing devices including an NVidia GPU card, two AMD GPU cards and an Intel

DTt CPU processor.

Zhen Tianetal., 2015
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Modeling parameterized geometry in
GPU-based Monte Carlo particle transport
simulation for radiotherapy

Yoo Ch. Zhen Tian and Xun Jia:

8/1/2017

Monte Carlo (MC)
via massive paralleization. Almost al of g GPU-based MC
0 this paper is o
integratetin GPUbased MC simulations. In our module.
definedby
U-basedMC d
case with appl (2) Mev.
simulationin inserts of Inboth

voxelized geometry. The averaged dose differences were 1.03% and 0.29%.
lvely.

respec Varian
Vs o
ime
the highest
e ~3iimes of
a coupled
dimensionof

andin 0.69-1.23 times for photon only transport,

Arezoo Modir
amodiri@som.umaryland.edu
adiation Oncology.

apy, Yuiie Chi et al,, 2016 University of Maryland, Baltimore.

Modeling parameterized geometry in
GPU-based Monte Carlo particle transport
simulation for radiotherapy

Almostall
e

lop
“The purpose of this paper s to develop a module to model parameric geometry and
integrateitin lations. I dul

U-based MC testedin
casewith app (@) VeV
simulation’n n both
voclized geomelry. The averaged dose differences were 1.03% and 0.20%,
respectively. Varian
vs
ime under
the highest
g ~3times of
s
1 P

and n 0.69-1.23 times for photon only transport.
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radiotherapy, Yuiie Ch et al., 2016

University of Maryland, Baltimore

Dose Calculation

An ultra-fast Monte Carlo dose engine for High-dose-rate brachytherapy

Monte Carlo dose engine(gBMC) A phase space file was generated for the Varian
V52000 Ir-192 source. In a water phantom, the
Ao o] (W20 o) calculated radial dose function was within 0.6% of
S l> the TG43 calculations for radial distances from 1
1 cm to 20 cm. The anisotropy functions were within

1% for radial distances from 1 cm to 20 cm except
for polar angles larger than 173°. Local point-dose
differences were within 2%. In a Mammosite breast
) ) cancer case with 22 dwell locations, gBMC and
ot SRS, 1. s SN, = Geant4 isodose lines compared well. The

e computation time was about 28 seconds using the
phase-space file source and 20 seconds using the
parameterized source to simulate 1 billion
particles, yielding less than 1% statistical
uncertainty.
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MLC Trajectory Optimization

+ Graph optimization to generate efficient dynamic
trajectories for delivery while maximizing the
angular flux through all PTV voxels.

+ 3D dose is for
using a commercial TPS progressive resolution
optimizer.

® Node (Control Point) == Deliverable trajectory
Current best trajectory
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Courtesy - Karl Bush - Stanford
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