Dosimetric impact of contouring errors and variability in Intensity Modulated Radiation Therapy (IMRT)

James Kavanaugh, MS DABR

Department of Radiation Oncology Division of Medical Physics

Washington University in St. Louis School of Medicine

Outline

- Importance of contour quality control
- Classification of contouring errors
- 3 Case Studies
 - Random Error: Prostate treatment
 - Systematic Error: Lung (RTOG 0617)
 - Variation: Head and Neck

Contour quality control

- Why should contour quality/accuracy be evaluated?
 - · Decision support on plan quality Standardization across the field
- · Impacts clinical study results/analysis Contour variability/errors one of
- the largest sources of dosimetric uncertainty in radiation therapy

Brachytherapy 2.21 npact of delineation uncertainties on dose to organs at rist CT-guided intracavitary brachytherapy

Washington University School of Medicine in St. Louis

Contour quality control

- How to incorporate into a clinical workflow?
 - Buy-in from all members of RO team
 Exists as a required step in planning workflow

 - · May require extensive training of all involved staff Standard agreed upon contouring methodology
- · How to assess deviations from standard practices?

Contouring Errors vs. Contouring Variations

- <u>Contouring Errors</u>: Clinical contours (OARs and PTVs) do not encapsulate underlying anatomic data Example: Optics not connected
 - · Subjectively assessed as medium-to-large deviations

Contouring Errors vs. Contouring Variations

- <u>Contouring Variations</u>: Clinical contours (OARs and PTVs) have minor deviations
 - Frequently associated with some ambiguity in the imaging
 - May arise from inter-observer differences

Contouring Errors vs. Contouring Variations

- · Errors/variations can have significant impact on plan quality
 - Dependent on a large number of patient and plan specific variables
 Dosimetric impact needs to be understood and assessed for any deviations
 - · Impact of error/variation assessed on a case-by-case basis

Factors impacting dosimetric uncertainty

- Proximity to target/high dose gradients
 Impacts PTV coverage/OAR sparing
 Impacts mean/max dose objectives
 Largest dosimetric impact
- Type of dosimetric objective
- Hype to dosinierin objective:
 Max dose objective:
 Higher impact for errors/variations occurring close proximity to target
 Small changes in contour can have a large impact
 Prioritize accuracy evaluation for targets close to PTV, inspecting for fine details
 Volume-based DVH objectives (Dmean, V_{cosy}):
 Sensitive to errors
 Relatively insensitive to variations
- Volume of normal tissue
 - Small volumes sensitive to variations and errors (Optics)
 Medium/Large volume less sensitive to small variations/errors

Systematic vs. Random Contouring Errors

- Systematic Contour Errors
 - Physician, Practice, or entire RT field consistently produces contours deviating from underlying anatomy
 - · Issue 1: Outcomes (survival/complications) may not correlate to dosimetric data
 - Issue 2: Results from clinical studies may produce incorrect conclusions
 - Issue 3: Field-wide clinical guidelines may not correlate to practice specific dosimetric results

 - May have significant impact on a large number of patients
 - · Contours created following standard guidelines
- Random Contouring Errors
 - · Contours produced for an individual patient deviate from underlying anatomy
 - Impacts plan quality evaluation and optimization

I Washington University School of Medicine in St. Louis

3 Case Studies

- Prostate (Random contouring error)

 - Rectum contouring errorImpacted optimization and plan evaluation
- Lung (Systematic contouring error)
 - Heart contouring error across RTOG 0617 clinical trial
 - Impacted clinical trial evaluation and possible outcome analysis
- Head and Neck (Contouring variation)

 - Spinal cord contouring variationImpact dosimetric evaluation of plan quality

Case 1: Random Error in Rectum Contour

- Prostate and Nodes
 - CTV: Prostate, Seminal Vesicles, Pelvic nodes
 PTV = CTV + 5mm
 IMRT + HDR Brachytherapy
 OARs: Rectum, Bladder, Sigmoid Colon, Bowel
- Rectum contouring error identified during manual QC
 - Standard contouring rules: Contour ends superiorly before rectum connects anteriolry with the sigmoid colon
 ~ ~5cm of rectum not contoured superiorly

- Classified as a random error
 Differed from contouring guidelines for single patient
 Missed by dosimetry and physician
- · Impacted plan quality due to poorly optimized plan

Case 1: Random Error in Rectum Contour

Case 1: Random Error in Rectum Contour

· Reoptimized plan dose on two rectum contours

Case 1: Random Error in Rectum Contour

Original plan optimized using incorrect rectum contour

Washington University School of Medicine in St. Louis

Case 1: Random Error in Rectum Contour

Final plan re-optimized using corrected rectum contour

Case 1: Random Error in Rectum Contour

· Final plan re-optimized using corrected rectum contour (Squares) · Original plan optimized using incorrect rectum contour (Triangles)

Case 2: Systematic Errors - RTOG 0617 and Heart Contours

- RTOG 0617: Standard dose vs. high-dose radiotherapy for patients with stage IIIA or IIIB NSCLC
 - Compare overall survival of patients receiving standard dose (60Gy/30fx) vs high-dose (74Gy/37fx) with concurrent chemotherapy
 Prioritized Lung-CTV (V_{20Gy}<37%), Spinal Cord (Dmax< 50Gy), and PTV coverage

 - Low priority for heart dose objectives
- · Overall survival worse for high-dose arm
 - Standard-dose median OS: 28.7 months
 - High-dose median OS: 20.3 months • More treatment related deaths in high-dose arm (8 vs 3). .
- · Higher heart dose may have impacted overall survival

Case 2: Systematic Errors - RTOG 0617 and Heart Contours

A

- RTOG Heart Contouring Guidelines

 - The heart should be contoured from its base to apex
 Beginning at the CT slice where the ascending aorta originates
- Standardized heart contour atlas created in response to RTOG 0617
 - Ventricles
 - Atria
 - . Pulmonary Artery
 - Pericardium Coronary Space

Washington University School of Medicine in St. Louis

Variation of Cardiac Contours Using Different Heart Definitions for NSCLC Patients Esnolled on RTOG 0617 Y Gog¹, EM Ore², V Ba-Ad¹, M Wester², F Kang², J. Yu ¹, T. Geidul ¹, W. Chen ¹, C. Hi Paties¹, Y. Xuo¹, J.D. Bratley³

Case 2: Systematic Errors RTOG 0617 and Heart Contours

Case 2: Systematic Errors - RTOG 0617 and Heart Contours

- Planning study to compare RTOG 0617 clinical plans to RapidPlan autoplan
 - PTV coverage normalized with Rx to cove 95% PTV
 - 22 patients
 - Utilization of RapidPlan to remove subjective planning
- Comparison of dose to RTOG heart vs.
 - revised heart (Dmean)

 - 74Gy Arm:
 Revised Heart: 19 Gy (RP) vs. 26.6 Gy (Clin)
 RTOG Heart: 12.9 Gy (RP) vs. 14.5 Gy (Clin)
 - 60 Gy Arm
 Revised Heart: 15Gy (RP) vs. 19.5 Gy (Clin)
 RTOG Heart: 8.2 Gy (RP) vs. 10.4 Gy (Clin)

			Revised	RTOG	
er	Patient	Prescription	Heart	Heart	Difference
	L008	60	5.96	1.2	
	L078	74	25.23	12.4	
	L079	60	24.38		
	L085	60	15.83	5.7	10.13
	L091	74	14.04	1.9	
	L092	74	23.15	19.9	
	L095	60	25.56	20.7	
	L097	74	24.15	21.4	
	L098	60	21.2	10.7	
	L099	60	16.52	2.6	13.92
	L101	60	11.26	1.3	9.96
	L103	74	15.42	6.8	
	L104	74	27.13	19.1	
	L105	60	10.84	5.9	
	L106	60	23.23		
	L107	60	9.63	4.9	4.73
	L108	74	9.72	6.8	2.92
	L109	74	24.5	20.1	
	L110	60	2.44	1.6	0.84
	L112	74	22.42	19.2	
	L113	74	4.5	1.2	
	L114	60	13.08	8.7	4.38
	Average		16.83	10.35	
	Std Dev		7.46	7.56	

Case 2: Systematic Errors - RTOG 0617 and Heart Contours

Case 3: Contouring Variations- Spinal Cord

- Bi-lateral head and neck
 Nasopharyngeal primary tumor
 Targets: 70Gv primary PTV, 56 Gv nodal PTV
 OARs: Spinal cord, optics, parotids, oral cavity, submandibular nodes
- Spinal cord contouring variation identified during QC physics precheck
 Institutional contouring rules: Spinal cord delineated as cylindrical column of uniform width
 User creates Cord + 5mm structure to optimize on
 Cord + 5mm < 506/y, Cord <456/y

 - · Resident contoured visible cord from CT scan, expanded on structure to create cord + 5mm
- Classified as a variation
 - Differed from contouring guidelines for single patient
 Variation is caused by imaging ambiguity and institutional standards
- Impacted plan quality evaluation due to high dose to Cord + 5mm

Case 3: Contouring Variations- Spinal Cord

Case 3: Contouring Variations- Spinal Cord

Case 3: Contouring Variations- Spinal Cord

Case 3: Contouring Variations- Spinal Cord

How to limit contouring variability?

- Manual/automated contour QC implemented during planning process

 - Peer review (physicians, physicists, dosimetrists)
 Standardized contouring guidelines implemented across a practice
 Implement contouring atlas to assist in contour creation
- Utilize auto-segmentation tools
 - Reduces variability by minimizing subjectivity created by human involvement
 Creates consist contours, may require manual modifications
- Incorporate multi-modality pre-imaging studies Minimizes ambiguity for soft tissue structures created on CT scan

Summary

- Contour QC is a critical component of an IMRT planning workflow
 Auto-contouring, peer review, and contouring atlases can minimize errors/variations
 - All members (physics, dosimetry, physician) of the treatment planning team should be involved in a contour QA process
- Errors/variations in contours can significantly impact plan quality
 Dependent on proximity to target, magnitude of errors, and type of planning objective
 - Must be evaluated on a case-by-case basis

🐺 Washington University School of Medicine in St. Loui:

Washington[®] University in St. Louis School of Medicine

James Kavanaugh Instructor Campus Box 8224 4921 Parkview Place St. Louis, MO 63110 (218) 260-9940

jkavanaugh@wustl.edu

©2016

I Washington University School of Medicine in St. Louis