Dosimetric impact of contouring errors and variability in Intensity Modulated Radiation Therapy (IMRT)

James Kavanaugh, MS DABR

Department of Radiation Oncology
Division of Medical Physics

Outline

• Importance of contour quality control
• Classification of contouring errors
• 3 Case Studies
 • Random Error: Prostate treatment
 • Systematic Error: Lung (RTOG 0617)
 • Variation: Head and Neck

Contour quality control

• Why should contour quality/accuracy be evaluated?
 • Decision support on plan quality
 • Standardization across the field
 • Impacts clinical study results/analysis
• Contour variability/errors one of the largest sources of dosimetric uncertainty in radiation therapy

Contour quality control

- How to incorporate into a clinical workflow?
 - Buy-in from all members of RO team
 - Exists as a required step in planning workflow
 - May require extensive training of all involved staff
 - Standard agreed upon contouring methodology

- How to assess deviations from standard practices?

Contouring Errors vs. Contouring Variations

- Contouring Errors: Clinical contours (OARs and PTVs) do not encapsulate underlying anatomic data
 - Example: Optics not connected
 - Subjectively assessed as medium-to-large deviations

- Contouring Variations: Clinical contours (OARs and PTVs) have minor deviations
 - Frequently associated with some ambiguity in the imaging
 - May arise from inter-observer differences
 - Example: Optic nerve/chiasm defined using CT images
Contouring Errors vs. Contouring Variations

- Errors/variations can have significant impact on plan quality
 - Depending on a large number of patient and plan specific variables
 - Dosimetric impact needs to be understood and assessed for any deviations
 - Impact of error/variation assessed on a case-by-case basis

Factors impacting dosimetric uncertainty

- Proximity to target/high dose gradients
 - Impacts PTV coverage/OAR sparing
 - Impacts mean/max dose objectives
 - Largest dosimetric impact
- Type of dosimetric objective
 - Max dose objective:
 - Higher impact for errors/variations occurring close proximity to target
 - Small changes in contour can have a large impact
 - Prioritize accuracy evaluation for targets close to PTV, inspecting for fine details
 - Volume-based DVH objectives (Dmean, V_{xxGy}):
 - Sensitive to errors
 - Relatively insensitive to variations
- Volume of normal tissue
 - Small volumes sensitive to variations and errors (Optics)
 - Medium/Large volume less sensitive to small variations/errors

Systematic vs. Random Contouring Errors

- Systematic Contour Errors
 - Physician, Practice, or entire RT field consistently produces contours deviating from underlying anatomy
 - Issue 1: Outcomes (survival/complications) may not correlate to dosimetric data
 - Issue 2: Results from clinical studies may produce incorrect conclusions
 - Issue 3: Field-wide clinical guidelines may not correlate to practice specific dosimetric results
 - May have significant impact on a large number of patients
 - Contours created following standard guidelines

- Random Contouring Errors
 - Contours produced for an individual patient deviate from underlying anatomy
 - Impacts plan quality evaluation and optimization
3 Case Studies

- Prostate (Random contouring error)
 - Rectum contouring error
 - Impacted optimization and plan evaluation

- Lung (Systematic contouring error)
 - Heart contouring error across RTOG 0617 clinical trial
 - Impacted clinical trial evaluation and possible outcome analysis

- Head and Neck (Contouring variation)
 - Spinal cord contouring variation
 - Impact dosimetric evaluation of plan quality

Case 1: Random Error in Rectum Contour

- Prostate and Nodes
 - CTV: Prostate, Seminal Vesicles, Pelvic nodes
 - PTV = CTV + 5mm
 - IMRT + HDR Brachytherapy
 - OARs: Rectum, Bladder, Sigmoid Colon, Bowel

- Rectum contouring error identified during manual QC
 - Standard contouring rules: Contour ends superiorly before rectum connects anterolily with the sigmoid colon
 - ~5cm of rectum not contoured superiorly

- Classified as a random error
 - Different from contouring guidelines for single patient
 - Missed by dosimetry and physician

- Impacted plan quality due to poorly optimized plan

![Image of Case 1: Random Error in Rectum Contour]
Case 1: Random Error in Rectum Contour

- Reoptimized plan dose on two rectum contours

Case 1: Random Error in Rectum Contour

- Original plan optimized using incorrect rectum contour

Case 1: Random Error in Rectum Contour

- Final plan re-optimized using corrected rectum contour
Case 1: Random Error in Rectum Contour

- Final plan re-optimized using corrected rectum contour (Squares)
- Original plan optimized using incorrect rectum contour (Triangles)

Case 2: Systematic Errors – RTOG 0617 and Heart Contours

- RTOG 0617: Standard dose vs. high-dose radiotherapy for patients with stage IIIA or IIIB NSCLC
 - Compare overall survival of patients receiving standard dose (60Gy/30fx) vs high-dose (74Gy/37fx) with concurrent chemotherapy
 - Prioritized Lung-CTV ($V_{20}< 37\%$), Spinal Cord (Dmax < 50Gy), and PTV coverage
 - Low priority for heart dose objectives

- Overall survival worse for high-dose arm
 - Standard-dose median OS: 28.7 months
 - High-dose median OS: 20.3 months
 - More treatment related deaths in high-dose arm (8 vs 3).

- Higher heart dose may have impacted overall survival

Case 2: Systematic Errors – RTOG 0617 and Heart Contours

- RTOG Heart Contouring Guidelines
 - The heart should be contoured from its base to apex
 - Beginning at the CT slice where the ascending aorta originates

- Standardized heart contour atlas created in response to RTOG 0617
 - Ventricles
 - Atria
 - Pulmonary Artery
 - Pericardium
 - Coronary Space

International Journal of Radiation Oncology*Biology*Physics
Volume 89, Issue 5, Supplement 1 September 2014, Page 770
Case 2: Systematic Errors
RTOG 0617 and Heart Contours

- Planning study to compare RTOG 0617 clinical plans to RapidPlan autoplan
 - PTV coverage normalized with Rx to cover 95% PTV
 - 22 patients
 - Utilization of RapidPlan to remove subjective planning
- Comparison of dose to RTOG heart vs. revised heart (Dmean)
 - 74 Gy Arm:
 - Revised Heart: 19 Gy (RP) vs. 26.6 Gy (Clin)
 - RTOG Heart: 12.9 Gy (RP) vs. 14.5 Gy (Clin)
 - 60 Gy Arm
 - Revised Heart: 15 Gy (RP) vs. 19.5 Gy (Clin)
 - RTOG Heart: 8.2 Gy (RP) vs. 10.4 Gy (Clin)

Average: 16.83
Std Dev: 7.46
Case 3: Contouring Variations - Spinal Cord

- Bi-lateral head and neck
- Nasopharyngeal primary tumor
- Targets: 70Gy primary PTV, 56Gy nodal PTV
- OARs: Spinal cord, optic, parotid, oral cavity, submandibular nodes

- Spinal cord contouring variation identified during QC physics precheck
 - Institutional contouring rules: Spinal cord delineated as cylindrical column of uniform width
 - User creates Cord + 5mm structure to optimize on
 - Cord + 5mm < 50Gy, Cord <45Gy
 - Resident contoured visible cord from CT scan, expanded on structure to create cord + 5mm

- Classified as a variation
 - Differed from contouring guidelines for single patient
 - Variation is caused by imaging ambiguity and institutional standards

- Impacted plan quality evaluation due to high dose to Cord + 5mm
How to limit contouring variability?

- Manual/automated contour QC implemented during planning process
 - Peer review (physicians, physicists, dosimetrists)
 - Standardized contouring guidelines implemented across a practice
 - Implement contouring atlas to assist in contour creation

- Utilize auto-segmentation tools
 - Reduces variability by minimizing subjectivity created by human involvement
 - Creates consistent contours, may require manual modifications

- Incorporate multi-modality pre-imaging studies
 - Minimizes ambiguity for soft tissue structures created on CT scan
Summary

- Contour QC is a critical component of an IMRT planning workflow
 - Auto-contouring, peer review, and contouring atlases can minimize errors/variations
 - All members (physics, dosimetry, physician) of the treatment planning team should be involved in a contour QA process

- Errors/variations in contours can significantly impact plan quality
 - Dependent on proximity to target, magnitude of errors, and type of planning objective
 - Must be evaluated on a case-by-case basis