Objective

Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques.

Outline

Applications of automated contour assessment
- classification for data mining
- error detection for quality assurance plan review process

Gathering and using data
- supervised vs. unsupervised learning contour models
- class imbalance

Methods for assessing contour quality
- machine learning
- segmentation

Clinical examples and potential pitfalls
Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

Hain-Chen Chen, Jun Tan, Steven Dolly, and James Kavanaugh
Department of Radiation Oncology, Washington University, St Louis, Missouri 63110
Mark A. Anastasio
Department of Biomedical Engineering, Washington University, St Louis, Missouri 63110
Daniele A. Low
Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095
H. Harold Jr Michael Atmar, Hiram Gee, Wade L. Thomaid, Bree Muth, and Xia Liu
Department of Radiation Oncology, Washington University, St Louis, Missouri 63110
(Received 14 June 2014; revised 24 November 2014; accepted for publication 2 January 2015; published 29 January 2015)

Automatically detect radiation therapy organ at risk contouring errors using novel geometric attribute distribution (GAD) models

Contour Quality Assurance

Error Detection
- Delineated structures are subject to errors from a number of sources:
 - limitations of current imaging techniques in visualizing human anatomy (e.g., insufficient contrast, resolution, or both)
 - inherent anatomical variability among individuals for manual contouring
 - inaccurate automated contouring
Contour Quality Assurance

Error Detection
- Delineated errors are a result of:
 - Mislabeling
 - Missed slices
 - Overlapped structures
 - Isolated voxels or small regions
 - Extremely large or small slices
 - Structure volume and location distortions

Geometric Attribute Distribution (GAD) models

Inputs:
- Geometric attributes (centroid, volume, and shape)
- Spatial relationship of neighboring structures
- Anatomical similarity of individual contours among patients

Models characterize:
- Inter-structural centroid and volume variations
- Intra-structural shape variations

Model attributes:
- Scalable and deformable
- Constrained by the respective principal attribute variations calculated from the training sets based on clinically verified contours

Flow chart for error detection strategy
Iterative weighted model
- Receiver Operating Characteristic (ROC) curve used to select optimal system parameters

Data
- 44 patient datasets (29 training and 15 testing)
- 1350 testing data-based attribute samples (1123 correct and 227 incorrect attributes) were synthesized from accurate contours

Quantitative analysis for contouring error detection
- Balanced accuracy (BA) → avoiding false classification
- Recall → identify positive samples
- Specificity → identify negative samples
- F-score → harmonic mean of Precision and Recall

Results
- BAs of 0.911 (centroid) and 0.842 (volume)
- BAs of 0.881 (brainstem shape) and 0.856 (left parotid shape)

Advantages of the method
- Training of incorrect contours is not required
- Enables incorrect slice identification
Population Derived Metrics

Four fundamental types of metrics are used by the method:

- **Size/Shape metrics** (example: volume) describe the geometric size and shape of a contour or structure in 2- or 3-dimensions,
- **Positional metrics** describe the relative position of one contour to another (example: centroid-to-centroid (C-C) distance),
- **Image-based metrics** relate to some property of the pixel values underlying the structure in the image (example: average pixel intensity in a structure),
- **Binary-Type metrics** which have only two possible outcome states (example: are gaps (missing planes) present in a structure, yes or no).

Heuristic determined window of ±1.96σ to determine “passing” structures where σ is the standard deviation of a given metric.

Method tested using a double-blind approach.

Users generated “engineered” contouring errors from verified accurate contours.

Sensitively (0.95) and specificity (0.81) were scored based on 81 structures with 42 errors.

Decision Criteria

- Heuristically determined window of ±1.96σ to determine “passing” structures where σ is the standard deviation of a given metric.
- Method tested using a double-blind approach.
- Users generated “engineered” contouring errors from verified accurate contours.
- Sensitively (0.95) and specificity (0.81) were scored based on 81 structures with 42 errors.
Region of interest (Segmentation)
- Delineation of targets and organs at risk, characterized as a set of voxels with binary labels indicating object or background

Features
- Measurements and descriptors of shape or intensity
- Examples: Volume, smoothness, intensity, etc.

Observed variables
- Measurements or features that can be calculated from the data

Latent variables
- Unobserved variables that we seek to infer from the observed variables
- Examples: Anatomical label for an ROI, volume of a particular ROI

Conditional probability distribution
- Distribution that estimates how well a latent variable is predicted by observed variables
- How well does an ROI’s volume predict the lung class label?

Learning
- The act of learning the probability distribution using training examples
- If it’s a very large ROI, it’s probably a lung

Inference
- Selecting the most likely outcomes given the observed data and the learned probability distributions
- Since it’s large, and dark, it’s a lung
Learning in Radiotherapy

- ROI classes are defined by features

- Learn to separate classes of ROIs
- At each node, find planes separating distributions to maximize information gain
Groupwise Information
Classes of ROIs commonly co-occur in plans:
- Lungs with hearts
Groups of ROIs have contextual features:
- Heart is near the lungs
- Left and right lung are of similar size
Build novel algorithm: Groupwise Conditional Random Forests to model this information

Validation Results

<table>
<thead>
<tr>
<th>Overall</th>
<th>Normal Tissue</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Treatment Plans</td>
<td>1574</td>
<td>15000 +</td>
</tr>
<tr>
<td>Number of Plan Classes</td>
<td>7</td>
<td>121</td>
</tr>
<tr>
<td>Number of ROI Classes</td>
<td>77</td>
<td>331</td>
</tr>
<tr>
<td>Number of ROIs</td>
<td>17579</td>
<td>52000 +</td>
</tr>
<tr>
<td>Accuracy</td>
<td>91.6 %</td>
<td>89.4 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall</th>
<th>Overall Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Treatment Plans</td>
<td>1574</td>
</tr>
<tr>
<td>Number of Plan Classes</td>
<td>7</td>
</tr>
<tr>
<td>Number of ROI Classes</td>
<td>77</td>
</tr>
<tr>
<td>Number of ROIs</td>
<td>17579</td>
</tr>
<tr>
<td>Accuracy</td>
<td>91.6 %</td>
</tr>
</tbody>
</table>
Validation Results

17,579 ROIs from 1574 clinically delivered plans
- 77 distinct ROI classes
- Train 60%, test 40%; stable for less training data

Error Detection

- 303 ROIs with lowest agreement re-evaluated

Target ROI Classification

- Need contextual information
- Lung target appears with lung ROI
Automated contour assessment will have important implications in routine QA and data mining activities. Proof of principle methods are being developed with promising preliminary results. Error detection and ROI classification validation results can be well described using common metrics that we employ already. There is tremendous potential to apply these automated methods to labor intensive treatment approaches i.e. adaptive, and may ultimately be required for these treatment approaches to be successful.