Spine SBRT: A Clinician's Update On Techniques and Outcomes

Chia-Lin (Eric) Tseng, MD FRCPC Radiation Oncologist Sunnybrook Health Sciences Centre University of Toronto

August 3, 2017

Disclosures

 I have no relevant financial or personal relationships/circumstances/conflicts of interest to disclose

Outline

- Spinal Metastases
- Spine Conventional EBRT
- Spine SBRT
 - · Indications/Rationale
 - Technical Considerations
 - Principles of Target Delineation
 - · Overview of Outcomes Data
 - Toxicity Avoidance
 - · Patterns of Failure
 - · Response Assessment

Spinal Metastases

Uncomplicated spine metastases

- · Tumor contained within bone
- Normal spinal alignment and no fracture
- · Pain that is not positional
- 5% can progress to MESCC or fracture

Complicated spine metastases

- · Mechanical instability
- · Bulky "Mass" type tumors
- MESCC
 - Surgical candidates

Bilsky Epidural Spinal Cord Compression (ESCC) Grading Scale

Spinal Instability Neoplastic Score (SINS)

SINS Criterion	Score
Location	
Junctional (occiput-C2, C7-T2, T11-L1, L5-S1)	3
Mobile spine (C3-6, L2-L4)	2
Semirigid (T3-T10)	1
Rigid (S2-S5)	0
Pain	
Mechanical	3
Occasional and non-mechanical	1
No pain	0
Bone lesion type	
Lytic	2
Mixed (lytic and blastic)	1
Blastic	0
Radiographic spinal alignment	
Subluxation/translation	4
Kyphosis/scoliosis	2
Normal alignment	0
Degree of vertebral body collapse or involvement	
>50% collapse	3
<50% collapse	2
No collapse but with >50% body involved	ī
None of the above	0
Posterolateral involvement (fracture or replacement by tumor) of spinal elements ^b	
Bilateral	3
Unilateral	i
None	0

Fisher et al. A novel classification system for spinal instability in neoplastic disease: an oridence-based approach and expert consensus fro the Spine Oncology Study Group. Spine (Fisha Fa 1976), 2010;35(22, Fit22). Fit220. Foursey et al. Spinal instability neoplastic searce on analysis of relability and validity from the spine occology study group. J Clin Oncol.

Conventional EBRT (cEBRT)

De-novo cEBRT

- Overall pain response rate ~60%, complete response ~23%¹⁻²
- Imaging-based LC range from 61-86%, but as low as 46% for mass-type tumors at 1 year³

Chow E, Harris N, Fan G, Tono M, See WM. Delliative radiatherapy trials for bons metastasses: a systematic review. J Clin thost, 2607:237:1411-1418.
Chow E, Zeng L, Sobto N, Brenzis K, Tono M, Latt S, Update on the systematic review of pollutive radiatherapy trials for bons metastasses. Clin Good. 2012:22112-124.
Minumoto M, Harrads H, Asakura H, et al. Radiatherapy for patients with metastasses to the spinal column: a review of GED patients at Shimukha Cancer Center Hospital. In:
Radiate Chool Bio 2809. vol. 127-280.

cEBRT Re-irradiation: SC.20 multi-center RCT

SC.20 Results

	Intention-to-trea	t analysis	Per-protocol analysis		
	8 Gy/single fraction (N=425)	20 Gy/multiple fractions (N =425)	8 Gy/single fraction (N=258)	20 Gy/multiple fractions (N=263)	
Overall response	118 (28%)	135 (32%)	116 (45%)	134 (51%)	
Complete response	36 (8%)	30 (7%)	35 (14%)	29 (12%)	
Partial response	82 (19%)	105 (25%)	81 (31%)	105 (40%)	
Not assessable	162 (38%)	160 (38%)	0	0	
Not defined*	92 (22%)	91 (21%)	91 (35%)	91 (35%)	
No change	7 (2%)	7 (2%)	7 (3%)	7 (3%)	
Pain progression	46 (11%)	32 (8%)	44 (17%)	31(12%)	

8Gy/1 non-inferior to 20Gy/5 and less toxic; however, findings not robust in per-protocol analysis, and tradeoffs between efficacy and toxicity must be considered

 Chow et al. Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial Lancet Oncol. 2004;15(2):164-171.

Spine SBRT

Technical details for practice of stereotactic body radiotherapy for spinal metasta Matthew Fords*, Daniel Lessurmean*, Dereit Hydrk*, Bits Manisotter (* Baja Banipersand*, Michael Relings*, Charles Indra', Septem Levis *, Bancy La Macchia *, Bagins*, York, Namend J. Lapertine*, Appl. Shigar *, Sept. S

Journal of Clinical Neuroscience

Spine SBRT Indications

Factors	Suitable	Cautionary	Unsuitable
Patient			
Performance status	ECOG 0-2		ECOG ≥3
Life expectancy	≥3 months		
Pain	Intractable		
Neurologic			Symptomatic cord compression or cauda equina syndrome
Oncologic			
Disease burden	Oligometastatic disease	Widespread, rapidly progressive disease	
Tumor histology	Histological proof of malignancy	Radiosensitive (eg. myeloma, lymphoma)	
Systemic therapy	Systemic therapeutic options available or indolent disease course		
Treatment			
Imaging	ESCC (Bilsky) grade 0-1	ESCC (Bilsky) grade 2	ESCC (Bilsky) grade 3 or cauda equina compressions
	Up to 3 contiguous or noncontiguous levels		>3 contiguous or noncontiguous levels
Spinal stability	SINS 0-6	SINS 7-12	SINS 13-18
Prior radiation	Previous cEBRT to affected level	Previous SBRT to affected level	Previous EBRT to affected level within 90 days or systemic radionuclide within 30 days
Positioning			Inability to tolerate near-rigid body immobilization

Abbreviations: SBRT, stereotactic body radiotherapy, ECOG, Eastern Cooperative Oncology Group; ESCC, epidural spinal cord compression; SINS, Spinal instability Neoplastic Score; EBRT, external beam radiotherapy; cEBRT, conventional EBRT.

Why Spine SBRT?

Common doses used in spine SBRT vs. cEBRT

Total Dose (Gv)	Dose/ Fraction (Gv)	Fractions	Biologic Equivalent Dose (Gv)	Technique
24	24	1	81.6	SBRT
24	12	2	52.8	SBRT
27	9	3	51.3	SBRT
18	10	1	50.4	SBRT
30	6	5	48.0	SBRT
24	8	3	43.2	SBRT
30	3	10	39	EBRT
20	4	5	28	EBRT
8	8	1	14.4	EBRT

 Represents 2-6x tumor BED as compared to palliative cEBRT

Technical Considerations

How do you do it?

And do it safely?

Technical Considerations at the University of Toronto

- Near rigid-body immobilization
 - Ex. BodyFIX
- Treatment Planning
 - CT Sim: 1mm slice thickness
 - MRI: volumetric T1/T2 axials for fusion
 - IMRT/VMAT
- Delivery
 - 4 mm MLC
 - IGRT
 - CBCT: pre/(intra)/post
 Correction threshold: 1 mm and 1 degree
 - Rotation Corrections
 - Hexapod robotic couch (6-deg of freedom)

Physics Contribution

Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch Intrafraction Motion Analysis Accounting for all Six

Derek Hyde, Ph.D.,** Fiona Lochray, M.R.T.,* Renee Korol, Ph.D.,*
Melanie Davidson, Ph.D.,* C. Shun Wong, M.D.,* Lijun Ma, Ph.D.,* a skhorc/holes

Intra-fractional Motion

Reproducibility of patient positioning during treatment delivery within 1.2mm and 0.9° with 95% confidence

PRV 1.5mm; PTV 2mm

Hyde et al. Spine steeoctactic body mulistherapy utilizing core-beam CT image-guidance with a accounting for all six degrees of freedom. Int J Radiut Occol Biol Phys. 2012;82(3):e555-e562.

Principles of Target Volume Delineation

Epidural CTV Cranio-Caudal Extension

5mm CTV cranio-caudally beyond visiable disease within the canal excluding spinal cord

Epidural Disease and Dose Distribution

Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

Multi-Institutional De-Novo SBRT Outcomes

60 40 18 24 30 36 Number at risk 330 218 134 85 58 34 24 14 Figure 4 Local tumor control analyzed per treated lesion: Kaplan Meier Curve with 95% confidence interval.

Kaplan Meier 12-month OS: 64.9% 12-month LC: 89.9%

JNS SPINE

Stereotactic body radiotherapy for de novo spinal metastases: systematic review

	Tumors		Follow-Up					
Authorn &	Pts Treated	Cancer	Duration Median	Local Control	Complete Pain	Overall	Tumor Done (Gvl/	BED
Year	(n/n)	Type	(mos)	Rate (%)	Response (%)	Survival†	No. of Fx (range)	$(\alpha)\beta = 10) (Gy)$
Yamada et al., 2008	103/93	Mixed	15 (all pts)	93 (96/103, crude, 2 yrs)	NR	15 mos (all pts, median)	18-241	50.4-81.6 (range)
Sahgal et al., 2009	18/14	Mixed	9	77.8 (14/18, crude)	NR	NR	24/3 (median)	43.2 (median)
Sohn et al., 2014	13/13	ROC	NR	85.7 (1 yr)	23.1	15 mos (median)	38/4 (mean)	74.1 (mean)
Guckenberger et al., 2014	387/301	Mixed	11.8	90 (1 yr), 84 (2 yrs)	58	85% (1 yr), 44% (2 yrs) (median 19.5 mos)	24/3 (median) (10-60/1-20)	43.2 (median) (range 20-78)
Thibault et al., 2014	51/51*	ROC	12.3	84.3 (crude)	NR	64.1% (1 yr)	24/2 (median)	52.8 (median)
Sellin et al., 2015	40/37	RCC	49.0	57	44.4 (with improve- ment)	16.3 mos (median)	24/1 (median)	81.6 (median)
Bate et al., 2015	24/24"	Mixed	9.8	95.8 (1-yr crude)	NR	NR	22/1 (median) (16-23/1)	70.4 (range 41.6~75.9)
Garg et al., 2012	47*/47	Mixed	NR	87.2 (crude)	NR	NR	18 (GTV), 16 (CTV) (non-RCC); 24 (GTV), 18 (CTV) (RCC)	50.4 (GTV), 41.6 (CTV) (non-RCC); 81.6 (GTV), 50.4 (CTV) (RCC)
Chang et al., 2007	22/17	Mixed	NR	68.1 (7/22 failures)	NR	NR	27-30/3-5	48-51.3 (range)
Chang et al., 2012	131/93	Mixed	23.7	89.2 (1-yr crude)	NR; 89.2 (at 1 yr, "pain control")	19 mos	19.9/1 (mean equivalent)	59.5 (mean)
Gerszten et al., 2005	8/8"	Breast	16	100	NR	NR	12.5–22.5 (mean 19 Gy)	28.13-73.13 (range) (mean 55.1)
Gill et al., 2012	147/14	Mixed	34	85.7	NR	80% (1 yr), 57% (2 yr) (Ml)	30-35/5	48-59.5 (range)
Ryu et al., 2004	61/49	Mixed	NR (max 24)	NR	NR (85 complete & partial)	74.3% (1 yr actuarial)	10-16/1	20-41.6 (range)
Staehler et al., 2011	105/55	RCC	33.4	90.4 at 2 yrs	0 (median) on visual analogue scale	17.4 mos (me- dian)	20/1 (median)	60 (median)

Sunnybrook Experience: 24Gy/2

- LC @ 1 year: 90.3%
- LC @ 2 years: 82.4%

De-novo SBRT Pain Relief Outcomes

Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1–2 trial

Kin Shelley Wang, Laurence D Rhines, Almon S Shiu, James N Yang, Ugur Selek, Ibrahima Gning, Ping Liu, I

Summary

Background Spinal stereotactic body radiation therapy (SBRT) is increasingly used to manage spinal metastases, yet the technique's effectiveness in controlling the symptom burden of spinal metastases has not been well described. We

Lanort Oncol 2002; 13: 395-402 Published Online January 27, 2012 DOI:10.1016/51g70-

Methods 149 patients with mechanically stable, non-cord-compressing spinal metastases (166 lesions) were given SBRT in a phase 1-2 study. Patients received a total dose of 27-30 Gy, typically in three fractions. Symptoms were

given 50 (2012) 2012 2015(31) 2036(31) 50 (2015) 2036(31) 50 (

De-novo SBRT Pain Relief Outcomes

Figure 1: Percentage of patients with no, mild, moderate, or severe pain on the BPI 0-10 scale, before and after SBRT BPI-Brief Pain inventory. SBRT-stereotactic body addotherapy.

Re-irradiation Example Case

 72M metastatic early castrate resistant prostate ca with multi-level mets to C+T spine treated with conventional RT 20Gy/5 C4-T4

12 months later

Re-irradiation Example Case

- Right arm paresthesia; Bilsky 1B; SINS 7
- ECOG 1

Prospective Re-irradiation SBRT Outcomes

Prospective Evaluation of Spinal Reirradiation by Using Stereotactic Body Radiation
Therapy
The Uservey of Trace MD Andrews Career Center Engineers
The Committee of The MD Andrews Career Center Engineers
The Committee of The MD Andrews Career Committee of Committee

 Garg AK, Wang X-S, Shiu AS, et al. Prospective evaluation of spinal retreaslation by using streectartic body radiation therapy: The University of Texas MD Andrean Canner Center experience. Canner. 201;117(15):2509-3516.

Multi-Institutional Re-irradiation SBRT Outcomes

CLINICAL ARTICLE

Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis

Ahmed Hashmi, MD,¹ Matthias Guckenberger, MD,²³ Ron Kersh, MD,¹ Peter C. Gerszten, MD,² Frederick Mantel, MD,² Inga S. Grills, MD,² John C. Flickinger, MD,² John H. Shin, MD,² Doniel K. Fahim, MD,² Brian Winey, PhD,™ Kevin Oh, MD,° B. C. John Cho, MD, PhD,¹* Daniel Letourneau, PhD,¹¹ Jason Sheehan, MD, PhD,¹¹ and Arjun Sahgal, MD¹

Multi-Institutional Re-irradiation SBRT Outcomes

Kaplan Meier 12-month OS: 64% 12-month LC: 83%

JNS_{SPINE}

Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review

E International Stereotactic Radiosurgery Society practice guideline

Sten Myrehaug, MD,¹ Arjun Sahgal, MD,¹ Motohiro Hayashi, MD,² Marc Levivier, MD,² Lijun Ma, PhD,⁴ Roberto Martinez, MD,¹ Ian Paddick, MSc,⁴ Jean Règis, MD,² Samuel Ryu, MD,² Ben Slotman, MD, PhD,² and Antonio De Salles, MD, PhD[±]

TABLE 4. Spine SBRT reirradiation systematic review: treatment outcomes

Authors & Year	Median FU in Mos (range)	FU Schedule	Definition of Progression	Local Control	Overall Survival	Assessment Scale	Pain Response
Sahgal et al., 2009	7 (1–48)	Not defined	Radiographic or neurological	1 yr, 82%	Median 21 mos	NR	NR
Choi et al., 2010	7 (4–27)	MRI every 2-3 mos	Radiographic	1 yr, 73%	1 уг, 68%	NR	65% improve- ment in pain
Garg et al., 2011	17.6 (0.9-67.5)	MRI every 3 mos	Radiographic	1 yr, 76%	Median 22.5 mos; 1 yr, 76%	BPI	Improvement in pain at 6 mos
Damast et al., 2011	12.1 (0.2-63.6)	MRI every 3-4 mos	Radiographic	1 yr all, 66%	Median 13.6 mos	NR	77% improve- ment in pain
Mahadevan et al., 2011	12 (4-36)	CT 1 mo post, other- wise not defined	Radiographic or neurological	1 yr, 90%	Median 11 mos	NR	79% improve- ment in pain
Ahmed et al., 2012	8.2	MRI at 2 mos & then every 6 mos ± PET	Radiographic	1 yr, 83%	1 yr, 28%	FACT-G	NR
Chang et al., 2012	17.3	MRI/PET at 3, 6, & 12 mos	Radiographic	1 yr, 81%	Median 11 mos	NR	80.8% control rate at 1 yr
Thibault et al., 2014	12.3 (1.2-55.4)	MRI every 2-3 mos	Radiographic	1 yr, 73%	NR	NR	NR
Thibault et al., 2015 ²²	6.8 (0.9-39)	NR	Radiographic	1 yr, 81%	Median 10.0 mos	NR	NR

Late Toxicities: VCF Post-SBRT

Baseline VCF

24Gy/1

Fracture Progression

Cusha MVR, Al-Omair A. Atonafu EG, et al. Vortebral compression fracture (VCF) after spine Analysis of predictive factors. Int al Radiat Oncol Biol Phys. 2002;84(0):x843-848.

Late Toxicities: VCF Post-SBRT

Predictors of VCF

Prophylactic Surgical Stabilization?

Radiation Myelopathy: MR-based Delineation of the Spinal Cord

Radiation Myelopathy: MR-based Delineation of the Spinal Cord

Spinal Cord Motion?

Papits Controlled Magnetic Resonance Imaging Assessment of Spinal Cord and Cauda Equina Motion in Supine Patients With Spinal Metatatases Planned for Spine Stereotactic Body Radiation Therapy Clast-to Break, Mr. "Harbald S. Souman, Pril." (July Mr. N.Ph.", Imag. Stolins, No." Sabable Thibauti, Mo.", In C. John Che, Mr. Php. Amar Simesew, MSC, MRT. Guper Ya, Mo. (Machael G. Fellings, Ph. Ph.) and Spinesey, MSC, MRT. Guper Ya, Mo. (Machael G. Fellings, Ph. Ph.) and Spinesey, MSC, MRT. Guper Ya, Mo. (Machael G. Fellings, N. Ph.) and Spinesey.

 $\textbf{Methods and Materials:} \ \ We \ analyzed \ \ CNT \ motion \ in \underline{65 \ patients \ with \ spinal \ metas-}$ tases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic

> Median oscillatory motion 0.16-0.44mm Median bulk displacements 0.51-0.66mm

Evidence-Based: De-novo SBRT Cord Dose Limits

Probabilities of Radiation Myelopathy Specific to Stereotactic Body Radiation Therapy to Guide Safe Practice
Arjan Salagal, MD. "I Wrian Weinberg, Pab, I Lijun Ma, Ph.D. I' Eric Chang, MD.
Sam Chao, MD. Hackander Musecchi, MD. Alessande Gorgidho, MD, "
Scott Solty, MD, I' Peter C. Gerszten, MD, I' San Ryu, MD, " Lilyana Angelov, MD,
I' Ili Silbak, MD. " Sahu Woog, MD, and Durid A. Lanon, MD, PhD"

	1 fraction Pmax limit (Gy)	2 fractions Pmax limit (Gy)	3 fractions Pmax limit (Gy)	4 fractions Pmax limit (Gy)	5 fractions Pmax limit (Gy)
1% probability	9.2	12.5	14.8	16.7	18.2
2% probability	10.7	14.6	17.4	19.6	21.5
3% probability	11.5	15.7	18.8	21.2	23.1
4% probability	12.0	16.4	19.6	22.2	24.4
5% probability	12.4	17.0	20.3	23.0	25.3

Sahgal A, Weinberg Y, Ma L, Chong E, Chao S, Muncovic A, Gergelllo A, Soltys S, Gerenten PC, Ryu S, Angelov L, Gilbs I, Wong CS, Larson DA. Probabilities of radiation tryologathy specific to stereotactic body radiation therapy to gade safe practice. Int J Radiat Chool Biol Phys.

Evidence-Based: Re-irradiation SBRT Cord **Dose Limits**

CLINICAL INVESTIGATION REIRRADIATION HUMAN SPINAL CORD TOLERANCE FOR STEREOTACTIC BODY RADIOTHERAPY

ARRY SARGAL, M.D., **LINY MA, PR.D., **VIVAN WEFGERD, PR.D., **Ints: C. GRISS, M.D., **
SAN CING, M.D., **UNG-XWI CHANG, M.D., **MORE WEIGHER, W.D., **
LEITONG ANGERIE, M.D., **Eight, C. GRISS, M.D., **
SON, M.D., **Ints: C. GRISSTEN, M.D., **Ints: C. GRISSTEN, M.D., **
C. SIRU, W.G., **AND, **Ints: C. GRISSTEN, M.D., **
C. SIRU, W.G., **Ints: A. LASSON, **

C. SIRU, W.G., **Ints: A. LASSON, **

Table 6. Reasonable reirradiation SBRT doses to the thecal sac P_{max} following com-

Conventional Radiotherapy (nBED)	1 fraction: SBRT dose to thecal sac P _{max}	2 fractions: SBRT dose to thecal sac P _{max}	3 fractions: SBRT dose to thecal sac P _{max}	4 fractions: SBRT dose to thecal sac P _{max}	5 fractions: SBRT dose to thecal sac P _{max}
0.	10 Gv	14.5 Gy	17.5 Gy	20 Gy	22 Gy
20 Gy in 5 fractions (30 Gy ₂₀₂)	9 Gy	12.2 Gy	14.5 Gy	16.2 Gy	18 Gy
30 Gy in 10 fractions (37.5 Gy ₂₀)	9 Gy	12.2 Gy	14.5 Gy	16.2 Gy	18 Gy
37.5 Gy in 15 fractions (42 Gy _{3/2})	9 Gy	12.2 Gy	14.5 Gy	16.2 Gy	18 Gy
40 Gy in 20 fractions (40 Gy _{2/2})	N/A	12.2 Gy	14.5 Gy	16.2 Gy	18 Gy
45 Gy in 25 fractions (43 Gy _{2/2})	N/A	12.2 Gy	14.5 Gy	16.2 Gy	18 Gy
50 Gy in 25 fractions (50 Gy _{2/2})	N/A	11 Gy	12.5 Gy	14 Gy	15.5 Gy

Sahgal A, Ma L, Weinberg V, et al. Reirradia 2012;82(1):107-116.

Separation Surgery

- Limited approach where only the epidural component of the tumor is decompressed and stabilization is achieved to facilitate postoperative radiation
 - Allows high dose SBRT to be delivered while maintaining dose constraints to the spinal cord

I. Salgul A, Bileky M, Chang KL, Ma L, Yamada Y, Rhines LD, Létourneau D, Foote M, Yu E, Larson DA, Feblings MG. Stereotactic body radiotherapy for spinal metastase

Neuro-Oncology 15(10):1413-1419, 2013

NEURO-ONCOLOGY

U of Toronto Experience

Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy

LC @ 1 year: 84% OS @ 1 year: 64%

Al-Omair A, Massaci L, Massac-Cite I, Campbell M, Attendu EG, Percet A, Letourneau D, Yu E, Rampersand R, Massicette E, Levie S, Yee A. Thibush I, Feblings MG, Sahgui A. Sangiasi resection of epidural diseases improves local control following postoperative spins sterectarity holy indistributesys: Neuro Oncol. 2023 Oct;12(10):1433-0.

U of Toronto Post-op SBRT Experience

 Al-Omair A, Massaci L, Massoc-Cute L, Compbell M, Atrendu EG, Parent A, Letourneau D, Yu E, Rompeesuad R, Massicotte E, Lewis S, Yee A, Thibask I, Feblings MG, Subg A. Surgical resection of spidural diseases improves local control following postoperative spins strevetactic body radiatherapy: Neuro Oncol. 2021 Oct;15(10):1413-0.

Radiation Oncology tiology • phone	MDACC
eventeming	Experience

0	rade (n=69)	20%
la	5	7%
1b	22	31%
lc	9	13%
2	17	25%
3	3	4%
Postoperative Bilsky	grade (n=69)	
0	57	82%
1a	6	9%
1b	6	9%
2-3	0	(

 66 patients (69 tumors

Fractionation: 16-24Gy/1, 27Gy/3, 30Gy/5

MDACC Post-op SBRT Experience

Fig. 1. Kaplan-Meier estimates of the trea status. Abbreviation: Vol = volume.

LC @ 1 year: 85% OS @ 1 year: 74%

Tao et al. Stereotactic Body Radiation Therapy for Spinal Meta Phys. 2016 Aug 1;65(5):1405-13.

Dosimetric Benefits of Surgical Decompression

Radiation Myelopathy Summary

- · Radiation myelopathy is a rare event even in the reirradiation scenario
- Evidence based guidelines to guide safe practice applicable to thecal sac or cord + 1.5 mm PRV which represent the safest practice

Patterns of Failure Post-SBRT

C2 met treated with 24Gy/2

Salvage SBRT delivered with 30Gy/5 Cord prv: 15.5Gy

Re-irradiation SBRT After Initial SBRT

Clinical Investigation

Salvage Stereotactic Body Radiotherapy (SBRT) Following In-Field Failure of Initial SBRT for **Spinal Metastases**

Isabelle Thibault, MD,* Mikki Campbell, MRT(T),*
Chia-Lin Tseng, MD,* Eshetu G. Atenafu, MSc,
Daniel Letourneau, PhD, Eugene Yu, MD, B.C. John Cho, MD,
Young K. Lee, PhD,* Michael G. Fehlings, MD, PhD, and
Arjun Sahgal, MD*

Re-irradiation SBRT After Initial SBRT

Characteristic	n=56 spinal segments	umulative Local Recurrence (%)				r ima		,-
Primary cancer origin		i i			bas	sed L	C	
Renal cell	13 (23.2%)	2 60%			819	,		
NSCLC	7 (12.5%)	ě			017	ro .		
Thyroid	7 (12.5%)	8						
Prostate	5 (8.9%)	9 40%						
Other	24 (42.9%)	.2						_
pinal level		# 20%		_	,			
Cervical	3 (5.4%)	Ē		1				
Thoracic	30 (53.6%)							
Lumbar	20 (35.7%)	0.0%						_
Sacrum	3 (5.4%)	0	5 1	10 15	50 5	5 30	35	
araspinal extension				Follow	-up (in mon	ths)		
Yes	47 (83.9%)	100 ft s						
No	9 (16.1%)	100	\					
ilsky epidural grade			£-q.					
0	15 (26.8%)	80	ì.					
la	9 (16.1%)	_						
1b	18 (32.1%)	E	ì					
1c	11 (19.6%)	¥ 60-	L.,					
2	3 (5.4%)	Overall Survival (%)						
3	0 (0%)	W 40		1				
TV shape		2 00		7				
Donut type*	43 (76.8%)	8		-7				
Nondonut	13 (23.2%)	20		٠,				
alvage SBRT total dose/nun	nber of fractions							
24-26 Gy/2 fractions	5 (8.9%)							
24-30 Gy/3 fractions	8 (14.3%)	0-						_
20-30 Gy/4 fractions	28 (50.0%)	0	5 1		20 2		35	
					v-up (in month			

Re-irradiation SBRT After Initial SBRT

	Pri	or conventional E	No prior conventional EBRT (n=32)				
Factor	EBRT	Initial first SBRT course	Salvage second SBRT course	Median total nBED	Initial first SBRT course	Salvage second SBRT course	Median total nBED
Median prescription absolute total dose in Gy/number of frx with ranges	22.5 (20-30)	24 (20-30)/ 2 (2-5) frx	30 (24-35)/ 4 (2-5) frx	N/A	24 (20-35)/ 2 (1-5) frx	30 (20-35)/ 4 (2-5) frx	N/A
Median prescription total dose nBED (Gy to) and range	23.3 (22.7-32.5)	42.0 (27.8-44.0)	43.8 (31.3-50.0)	111.1	44.0 (33.3-68.0)	43.8 (25.0-49.6)	87.8
Median CTV D90 nBED (Gy ₁₀) and range	23.3 (22.7-32.5)	26.8 (16.3-37.7)	29.8 (20.6-47.1)	81.4	32.5 (21.9-49.7)	27.7 (13.6-41.1)	56.5
Median PTV D90 nBED (Gy ₁₀) and range	23.3 (22.7-32.5)	25.4 (10.4-35.5)	25.7 (17.7-45.8)	77.0	29.2 (21.3-47.2)	24.3 (11.7-40.6)	52.3
Cord PRV nBED (Gv-)*							
Median Pmax and range	30.0 (16.9-37.5)	20.8 (12.5-29.9)	21.9 (17.5-26.7)	73.9	31.8 (18.1-40.1)	March Marketin	51.3
Median D0.1cc and range	30.0 (16.9-37.5)	17.2 (8.6-21.8)	18.1 (12.4-21.4)	66.8	21.7 (13.2-30.0)	17.7 (8.6-21.7)	40.0
Thecal sac nBED (Gy ₂)							
Median Pmax and range		19.7 (14.3-24.7)		80.4	33.4 (14.0-67.4)		54.6
Median D0.1 cc and range	37.5 (30.0-37.5)	15.3 (11.8-19.4)	20.9 (17.7-25.8)	71.5	25.0 (11.9-60.5)	20.6 (8.4-29.5)	43.6

Patterns of Failure Post-SBRT Take Home

Thibuik I, Camplell M, Tsong C-L, et al. Salvage Starectactic Rody Radiatherapy (SHRT) Following In-Field Failure of Initial SHRT for Spiral Metastases. Int J Radiat Oxeo! Biol Phys. 2015;20(2):355-360.

- Epidural progression is the most common pattern of failure
 - Relative under-dosing of the epidural space
 - Bad tumor biology
 - Geographic miss
- Reirradiation spine SBRT, most often with 30 Gy in 4 fractions, for spinal metastases that failed initial SBRT is a feasible and efficacious salvage treatment option

Challenges of Response Assessment

Pseudo-progression After Spine SBRT

Consensus Response Assessment Post-SBRT

| Imaging-based local tumour response | MRI preferred* | Images should be interpreted by a radiation oncologist and radiologist | Cocal control may be defined as the absence of progression within the treated area on senal imaging (two or three consecutive MRI scans 6-8 weeks apart)* | Cocal control may be defined as* | Cocal control may be defined as | Cocal control may be defined as* | Cocal control may be defined as | Cocal control may be defined as* | Cocal control may b

Ongoing Studies

RADIATION THERAPY ONCOLOGY GROUP

RTOG 0631

PHASE II/III STUDY OF IMAGE-GUIDED RADIOSURGERY/SBRT FOR LOCALIZED SPINE METASTASIS

- Randomizing patients with up to 3 separate sites of spinal metastases to 8 Gy in 1 fraction of cEBRT vs. SBRT to a dose of 16-18 Gy/1
- Primary objective:
 - Pain response rates as measured by the 11-point Numerical Rating Pain Scale (NRPS) at 3 months

Ongoing Studies

CANADIAN CANCER TRIALS GROUP (CCTG)

A RANDOMIZED PHASE II/III STUDY COMPARING STEREOTACTIC BODY RADIOTHERAPY (SBRT) VERSUS CONVENTIONAL PALLIATIVE RADIOTHERAPY (CRT) FOR PATIENTS WITH SPINAL METASTASES

CCTG Protocol Number: SC.24

STUDY CHAIR: Arjun Sahgal

TRIAL COMMITTEE: Mitchel Liu, Edward Chow,
Rebecca Wong, Jim Butler,
Jeffrey Greenspoon, Michael Fehlings,
Pejima Maralani, Laura Masseci,
Young Lee

SENIOR INVESTIGATOR: Wendy Parulekai

BIOSTATISTICIAN: Keyue Ding

QUALITY OF LIFE COORDINATOR: Michael Brunds CORRELATIVE STUDIES COORDINATOR: Stanley Liu

STUDY COORDINATOR: Maaike Hum

Canadian SC.24 Schema

Patients with tumours (excluding seminoma, small cell lung cancer and metastases from hematologic malignancies - e.g., lymphoma, myeloma) who have MRI-documented spall and metastases, suitable for receiving radiation therapy, and fulfill the following criteria:

- Pain secondary to spinal metastases requiring treatment
- 3 consecutive spinal segments involved by tumour to be included in the target volume

	R A N D O M	→	ARM 1 Standard Conventional I (CRT)** 20 Gy in 5 fractions	
>	I Z			
	A T		ARM 2 Stereotactic Body Radio	

24 Gy in 2 fractions

Primary Endpoint - Phase III

The primary objective of the phase III study is to assess complete pain response in the treatment area at 3 months post-radiation.

Conclusion	C	าท	\cap	ICI	ш	n	n	1

- Spine SBRT is an emerging field with great promise for patient care
 - Uniquely suited for selected patients as it allows dose escalation to the tumor while attaining rapid dose falloff to minimize spinal cord doses
 - Good LC and pain response rates in reported series
- Much work has been done in technique and consistent contouring approach defined
- Imaging-based (MRI) outcomes and follow-up now standard: SPINO
- Serious toxicities rare although caution must be exercised with respect to cord dose limits and management of VCF risk
- · Higher level of evidence limited
 - · Randomized trials ongoing to help define practice